APPENDICES

<table>
<thead>
<tr>
<th>Appendix I</th>
<th>General Parameters Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix II</td>
<td>Nutrients and Total Metals Laboratory Results</td>
</tr>
<tr>
<td>Appendix III</td>
<td>Water Quality Guidelines for Metals Sampled</td>
</tr>
<tr>
<td>Appendix IV</td>
<td>Microbiology Results Laboratory Reports</td>
</tr>
<tr>
<td>Appendix V</td>
<td>Zooplankton Results and Laboratory Reports</td>
</tr>
</tbody>
</table>
APPENDIX I

General Parameters Results
Slocan Lake Stewardship Society-Water Sampling Data Sheet

Site: #1 Downstream of Evans Ck., facing Cape Horn
Date: Aug 2010
Time:

Samplers:

Elev.
Lat: 49° 48' 51" N
Long: 117° 28' 26" W
UTM: 0465876 5518092

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Sp. Cond. (µS/cm)</th>
<th>TDS (g/litre)</th>
<th>Diss. Oxy (%)</th>
<th>Diss. Oxy (mg/l)</th>
<th>pH</th>
<th>Temp. (deg C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>85</td>
<td>0.055</td>
<td>-1.88</td>
<td>7.7</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>84</td>
<td>0.055</td>
<td>0</td>
<td>7.71</td>
<td>18.66</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>91</td>
<td>0.059</td>
<td>4.33</td>
<td>7.73</td>
<td>10.79</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>94</td>
<td>0.061</td>
<td>5.62</td>
<td>7.62</td>
<td>8.05</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>96</td>
<td>0.063</td>
<td>6.33</td>
<td>7.53</td>
<td>5.78</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>97</td>
<td>0.063</td>
<td>6.89</td>
<td>7.47</td>
<td>5.02</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>97</td>
<td>0.063</td>
<td>7.27</td>
<td>7.45</td>
<td>4.71</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>97</td>
<td>0.063</td>
<td>7.45</td>
<td>7.44</td>
<td>4.52</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>97</td>
<td>0.063</td>
<td>7.85</td>
<td>7.43</td>
<td>4.39</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>97</td>
<td>0.063</td>
<td>7.77</td>
<td>7.42</td>
<td>4.33</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>97</td>
<td>0.063</td>
<td>8.13</td>
<td>7.41</td>
<td>4.29</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>97</td>
<td>0.063</td>
<td>8.32</td>
<td>7.41</td>
<td>4.25</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth (m)</td>
<td>Sp. Cond. (μS/cm)</td>
<td>TDS (g/litre)</td>
<td>Diss. Oxy (%)</td>
<td>Diss. Oxy (mg/l)</td>
<td>pH</td>
<td>Temp. (deg C)</td>
</tr>
<tr>
<td>----------</td>
<td>------------------</td>
<td>--------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----</td>
<td>--------------</td>
</tr>
<tr>
<td>5</td>
<td>85</td>
<td>0.055</td>
<td></td>
<td>5.48</td>
<td>7.77</td>
<td>18.76</td>
</tr>
<tr>
<td>10</td>
<td>85</td>
<td>0.055</td>
<td></td>
<td>6.24</td>
<td>7.81</td>
<td>18.1</td>
</tr>
<tr>
<td>15</td>
<td>88</td>
<td>0.057</td>
<td></td>
<td>7.75</td>
<td>7.87</td>
<td>12.94</td>
</tr>
<tr>
<td>20</td>
<td>91</td>
<td>0.059</td>
<td></td>
<td>8.38</td>
<td>7.73</td>
<td>9.56</td>
</tr>
<tr>
<td>25</td>
<td>96</td>
<td>0.062</td>
<td></td>
<td>8.85</td>
<td>7.6</td>
<td>6.26</td>
</tr>
<tr>
<td>30</td>
<td>96</td>
<td>0.063</td>
<td></td>
<td>9.12</td>
<td>7.52</td>
<td>5.39</td>
</tr>
<tr>
<td>35</td>
<td>97</td>
<td>0.063</td>
<td></td>
<td>9.13</td>
<td>7.46</td>
<td>4.8</td>
</tr>
<tr>
<td>40</td>
<td>97</td>
<td>0.063</td>
<td></td>
<td>9.18</td>
<td>7.44</td>
<td>4.56</td>
</tr>
<tr>
<td>45</td>
<td>97</td>
<td>0.063</td>
<td></td>
<td>9.22</td>
<td>7.42</td>
<td>4.45</td>
</tr>
<tr>
<td>50</td>
<td>97</td>
<td>0.063</td>
<td></td>
<td>9.26</td>
<td>7.42</td>
<td>4.37</td>
</tr>
<tr>
<td>55</td>
<td>97</td>
<td>0.063</td>
<td></td>
<td>9.28</td>
<td>7.41</td>
<td>4.32</td>
</tr>
<tr>
<td>60</td>
<td>97</td>
<td>0.063</td>
<td></td>
<td>9.34</td>
<td>7.41</td>
<td>4.26</td>
</tr>
</tbody>
</table>
Slocan Lake Stewardship Society-Water Sampling Data Sheet

Site: #3 Off Wee Sandy Creek

Date: Aug 2010
Time:

Samplers:

<table>
<thead>
<tr>
<th>Elev.</th>
<th>Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lat: 50° 00' 35" N</th>
<th>Weather:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Long: 117° 24' 39" W</th>
<th>UTM: 0470669 5539776</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Depth
<table>
<thead>
<tr>
<th>Depth (meters)</th>
<th>Sp. Cond. (μS/cm)</th>
<th>TDS (g/litre)</th>
<th>Diss. Oxy (%)</th>
<th>Diss. Oxy (mg/l)</th>
<th>pH</th>
<th>Temp. (deg C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>90</td>
<td>0.059</td>
<td>10.08</td>
<td>7.92</td>
<td>18.55</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>89</td>
<td>0.058</td>
<td>11.76</td>
<td>7.89</td>
<td>15.27</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>90</td>
<td>0.058</td>
<td>12.54</td>
<td>7.84</td>
<td>11.85</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>91</td>
<td>0.059</td>
<td>12.32</td>
<td>7.76</td>
<td>10.37</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>95</td>
<td>0.062</td>
<td>12.47</td>
<td>7.62</td>
<td>7.45</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>97</td>
<td>0.063</td>
<td>12.37</td>
<td>7.55</td>
<td>6.06</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>97</td>
<td>0.063</td>
<td>12.01</td>
<td>7.48</td>
<td>5.32</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>97</td>
<td>0.063</td>
<td>11.88</td>
<td>7.45</td>
<td>4.84</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>97</td>
<td>0.063</td>
<td>11.69</td>
<td>7.42</td>
<td>4.69</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>97</td>
<td>0.063</td>
<td>11.57</td>
<td>7.41</td>
<td>4.57</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>97</td>
<td>0.063</td>
<td>11.57</td>
<td>7.4</td>
<td>4.48</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>97</td>
<td>0.063</td>
<td>11.68</td>
<td>7.39</td>
<td>4.41</td>
<td></td>
</tr>
<tr>
<td>Depth (meters)</td>
<td>Sp. Cond. (μS/cm)</td>
<td>TDS (g/litre)</td>
<td>Diss. Oxy (%)</td>
<td>Diss. Oxy (mg/l)</td>
<td>pH</td>
<td>Temp. (deg C)</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>------------------</td>
<td>----</td>
<td>---------------</td>
</tr>
<tr>
<td>5</td>
<td>91</td>
<td>0.059</td>
<td></td>
<td>9.79</td>
<td>7.88</td>
<td>17.88</td>
</tr>
<tr>
<td>10</td>
<td>92</td>
<td>0.06</td>
<td></td>
<td>10.39</td>
<td>7.85</td>
<td>16.38</td>
</tr>
<tr>
<td>15</td>
<td>89</td>
<td>0.058</td>
<td></td>
<td>11.16</td>
<td>7.92</td>
<td>13.47</td>
</tr>
<tr>
<td>20</td>
<td>92</td>
<td>0.06</td>
<td></td>
<td>11.64</td>
<td>7.8</td>
<td>9.37</td>
</tr>
<tr>
<td>25</td>
<td>96</td>
<td>0.062</td>
<td></td>
<td>11.37</td>
<td>7.63</td>
<td>6.87</td>
</tr>
<tr>
<td>30</td>
<td>97</td>
<td>0.063</td>
<td></td>
<td>11.22</td>
<td>7.57</td>
<td>6.88</td>
</tr>
<tr>
<td>35</td>
<td>98</td>
<td>0.064</td>
<td></td>
<td>10.94</td>
<td>7.49</td>
<td>4.9</td>
</tr>
<tr>
<td>40</td>
<td>98</td>
<td>0.063</td>
<td></td>
<td>10.86</td>
<td>7.44</td>
<td>4.62</td>
</tr>
<tr>
<td>45</td>
<td>98</td>
<td>0.064</td>
<td></td>
<td>10.83</td>
<td>7.42</td>
<td>4.53</td>
</tr>
<tr>
<td>50</td>
<td>98</td>
<td>0.064</td>
<td></td>
<td>10.82</td>
<td>7.41</td>
<td>4.44</td>
</tr>
<tr>
<td>55</td>
<td>98</td>
<td>0.064</td>
<td></td>
<td>10.74</td>
<td>7.4</td>
<td>4.42</td>
</tr>
<tr>
<td>60</td>
<td>98</td>
<td>0.064</td>
<td></td>
<td>10.9</td>
<td>7.39</td>
<td>4.33</td>
</tr>
</tbody>
</table>
Slocan Lake Stewardship Society-Water Sampling Data Sheet

Site: #1 Downstream of Evans Ck., facing Cape Horn
Date: Sept 2010
Time:
Samplers:
Elev.
Lat: 49° 48' 51" N
Long: 117° 28' 26" W
Temp.
Weather:
UTM: 0465875 5518092

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Sp. Cond. (µS/cm)</th>
<th>TDS (g/litre)</th>
<th>Diss. Oxy (%)</th>
<th>Diss. Oxy (mg/l)</th>
<th>pH</th>
<th>Temp. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>58</td>
<td>0.029</td>
<td></td>
<td>4.55</td>
<td>7.93</td>
<td>15.06</td>
</tr>
<tr>
<td>10</td>
<td>57</td>
<td>0.029</td>
<td></td>
<td>6.71</td>
<td>7.95</td>
<td>14.92</td>
</tr>
<tr>
<td>15</td>
<td>60</td>
<td>0.03</td>
<td></td>
<td>11.53</td>
<td>7.99</td>
<td>14.1</td>
</tr>
<tr>
<td>20</td>
<td>61</td>
<td>0.031</td>
<td></td>
<td>14.25</td>
<td>8.03</td>
<td>10.93</td>
</tr>
<tr>
<td>25</td>
<td>63</td>
<td>0.032</td>
<td></td>
<td>15.68</td>
<td>8.05</td>
<td>7.83</td>
</tr>
<tr>
<td>30</td>
<td>65</td>
<td>0.032</td>
<td></td>
<td>16.03</td>
<td>8.04</td>
<td>6.07</td>
</tr>
<tr>
<td>35</td>
<td>66</td>
<td>0.033</td>
<td></td>
<td>15.74</td>
<td>8.01</td>
<td>5.38</td>
</tr>
<tr>
<td>40</td>
<td>67</td>
<td>0.034</td>
<td></td>
<td>16.81</td>
<td>8</td>
<td>4.76</td>
</tr>
<tr>
<td>45</td>
<td>69</td>
<td>0.034</td>
<td></td>
<td>16.34</td>
<td>7.97</td>
<td>4.58</td>
</tr>
<tr>
<td>50</td>
<td>70</td>
<td>0.035</td>
<td></td>
<td>16.42</td>
<td>7.96</td>
<td>4.47</td>
</tr>
<tr>
<td>55</td>
<td>72</td>
<td>0.036</td>
<td></td>
<td>16.17</td>
<td>7.94</td>
<td>4.42</td>
</tr>
<tr>
<td>60</td>
<td>72</td>
<td>0.036</td>
<td></td>
<td>16.22</td>
<td>7.92</td>
<td>4.34</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Slocan Lake Stewardship Society-Water Sampling Data Sheet

Site: #2 Off of Enterprise Creek
Date: Sept 2010
Time:
Elev.
Temp.:
Lat: 49° 51' 46" N
Weather:
Long: 117° 26' 17" W
UTM: 0486494 5523483

<table>
<thead>
<tr>
<th>Depth (meters)</th>
<th>Sp. Cond. (µS/cm)</th>
<th>TDS (g/litre)</th>
<th>Diss. Oxy (%)</th>
<th>Diss. Oxy (mg/l)</th>
<th>pH</th>
<th>Temp. (deg C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>57</td>
<td>0.028</td>
<td>4.76</td>
<td>7.72</td>
<td>15.12</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>57</td>
<td>0.029</td>
<td>4.74</td>
<td>7.75</td>
<td>14.86</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>60</td>
<td>0.03</td>
<td>5.41</td>
<td>7.83</td>
<td>13.2</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>62</td>
<td>0.031</td>
<td>10.34</td>
<td>7.87</td>
<td>10.96</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>63</td>
<td>0.032</td>
<td>13.72</td>
<td>7.91</td>
<td>7.53</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>65</td>
<td>0.032</td>
<td>14.98</td>
<td>7.92</td>
<td>6.12</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>66</td>
<td>0.033</td>
<td>15.38</td>
<td>7.92</td>
<td>5.02</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>67</td>
<td>0.034</td>
<td>15.75</td>
<td>7.91</td>
<td>4.73</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>69</td>
<td>0.034</td>
<td>16.66</td>
<td>7.91</td>
<td>4.53</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>70</td>
<td>0.035</td>
<td>16.93</td>
<td>7.89</td>
<td>4.44</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>72</td>
<td>0.036</td>
<td>16.88</td>
<td>7.88</td>
<td>4.38</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>73</td>
<td>0.037</td>
<td>16.64</td>
<td>7.87</td>
<td>4.35</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Slocan Lake Stewardship Society-Water Sampling Data Sheet

Site: #3 Off Wee Sandy Creek

Date: Sept 2010
Time:

Samplers:

|-------|-------|------|---------------|----------|-------|----------------|------|-----------------|

<table>
<thead>
<tr>
<th>Depth (meters)</th>
<th>Sp. Cond.</th>
<th>TDS (g/litre)</th>
<th>Diss. Oxy (%)</th>
<th>Diss. Oxy (mg/l)</th>
<th>pH</th>
<th>Temp. (deg C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>60</td>
<td>0.03</td>
<td></td>
<td>5.25</td>
<td>7.62</td>
<td>14.68</td>
</tr>
<tr>
<td>10</td>
<td>60</td>
<td>0.03</td>
<td></td>
<td>5.85</td>
<td>7.66</td>
<td>14.63</td>
</tr>
<tr>
<td>15</td>
<td>60</td>
<td>0.03</td>
<td></td>
<td>8.39</td>
<td>7.69</td>
<td>14.28</td>
</tr>
<tr>
<td>20</td>
<td>62</td>
<td>0.031</td>
<td></td>
<td>11.64</td>
<td>7.77</td>
<td>9.48</td>
</tr>
<tr>
<td>25</td>
<td>65</td>
<td>0.032</td>
<td></td>
<td>12.38</td>
<td>7.82</td>
<td>6.98</td>
</tr>
<tr>
<td>30</td>
<td>66</td>
<td>0.033</td>
<td></td>
<td>12.84</td>
<td>7.83</td>
<td>5.59</td>
</tr>
<tr>
<td>35</td>
<td>67</td>
<td>0.033</td>
<td></td>
<td>13.05</td>
<td>7.83</td>
<td>4.99</td>
</tr>
<tr>
<td>40</td>
<td>68</td>
<td>0.034</td>
<td></td>
<td>12.77</td>
<td>7.83</td>
<td>4.74</td>
</tr>
<tr>
<td>45</td>
<td>70</td>
<td>0.035</td>
<td></td>
<td>12.72</td>
<td>7.81</td>
<td>4.61</td>
</tr>
<tr>
<td>50</td>
<td>71</td>
<td>0.035</td>
<td></td>
<td>13.2</td>
<td>7.8</td>
<td>4.49</td>
</tr>
<tr>
<td>55</td>
<td>72</td>
<td>0.036</td>
<td></td>
<td>13.45</td>
<td>7.8</td>
<td>4.41</td>
</tr>
<tr>
<td>60</td>
<td>74</td>
<td>0.037</td>
<td></td>
<td>13.05</td>
<td>7.8</td>
<td>4.36</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth (meters)</td>
<td>Sp. Cond. (µS/cm)</td>
<td>TDS (g/litre)</td>
<td>Diss. Oxy (%)</td>
<td>Diss. Oxy (mg/l)</td>
<td>pH</td>
<td>Temp. (deg C)</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----</td>
<td>--------------</td>
</tr>
<tr>
<td>5</td>
<td>61</td>
<td>0.03</td>
<td>8.8</td>
<td>7.53</td>
<td>14.42</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>61</td>
<td>0.031</td>
<td>9.4</td>
<td>7.59</td>
<td>14.24</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>62</td>
<td>0.031</td>
<td>9.06</td>
<td>7.65</td>
<td>13.74</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>63</td>
<td>0.031</td>
<td>10.36</td>
<td>7.71</td>
<td>10.77</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>64</td>
<td>0.032</td>
<td>10.72</td>
<td>7.75</td>
<td>7.87</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>66</td>
<td>0.033</td>
<td>10.49</td>
<td>7.77</td>
<td>5.65</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>67</td>
<td>0.033</td>
<td>9.85</td>
<td>7.76</td>
<td>5.02</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>67</td>
<td>0.033</td>
<td>9.94</td>
<td>7.75</td>
<td>4.66</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>68</td>
<td>0.034</td>
<td>10.31</td>
<td>7.75</td>
<td>4.53</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>70</td>
<td>0.035</td>
<td>10.37</td>
<td>7.75</td>
<td>4.48</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>72</td>
<td>0.036</td>
<td>9.83</td>
<td>7.74</td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>74</td>
<td>0.037</td>
<td>10.36</td>
<td>7.74</td>
<td>4.35</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth (meters)</td>
<td>Sp. Cond. (μS/cm)</td>
<td>TDS (g/litre)</td>
<td>Diss. Oxy (%)</td>
<td>Diss. Oxy (mg/l)</td>
<td>pH</td>
<td>Temp. (°C)</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----</td>
<td>-----------</td>
</tr>
<tr>
<td>5</td>
<td>41</td>
<td>0.051</td>
<td></td>
<td></td>
<td>9.16</td>
<td>7.04</td>
</tr>
<tr>
<td>10</td>
<td>41</td>
<td>0.051</td>
<td></td>
<td></td>
<td>9.09</td>
<td>7.07</td>
</tr>
<tr>
<td>15</td>
<td>41</td>
<td>0.049</td>
<td></td>
<td></td>
<td>9.09</td>
<td>7.15</td>
</tr>
<tr>
<td>20</td>
<td>41</td>
<td>0.049</td>
<td></td>
<td></td>
<td>9.42</td>
<td>7.17</td>
</tr>
<tr>
<td>25</td>
<td>41</td>
<td>0.05</td>
<td></td>
<td></td>
<td>9.39</td>
<td>7.21</td>
</tr>
<tr>
<td>30</td>
<td>42</td>
<td>0.052</td>
<td></td>
<td></td>
<td>9.3</td>
<td>7.57</td>
</tr>
<tr>
<td>35</td>
<td>42</td>
<td>0.054</td>
<td></td>
<td></td>
<td>10.06</td>
<td>7.45</td>
</tr>
<tr>
<td>40</td>
<td>43</td>
<td>0.055</td>
<td></td>
<td></td>
<td>10.07</td>
<td>7.43</td>
</tr>
<tr>
<td>45</td>
<td>43</td>
<td>0.056</td>
<td></td>
<td></td>
<td>9.88</td>
<td>7.42</td>
</tr>
<tr>
<td>50</td>
<td>45</td>
<td>0.057</td>
<td></td>
<td></td>
<td>9.78</td>
<td>7.42</td>
</tr>
<tr>
<td>55</td>
<td>45</td>
<td>0.058</td>
<td></td>
<td></td>
<td>9.77</td>
<td>7.41</td>
</tr>
<tr>
<td>60</td>
<td>45</td>
<td>0.059</td>
<td></td>
<td></td>
<td>9.74</td>
<td>7.41</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Slocan Lake Stewardship Society-Water Sampling Data Sheet

Site
#2 Off of Enterprise Creek

Date: Nov 2010
Time:

Samplers:

Elev.

Lat: 49° 51' 46" N
Weather:

Long: 117° 26' 17" W
UTM: 0486494 5523483

<table>
<thead>
<tr>
<th>Depth (meters)</th>
<th>Sp. Cond. (µS/cm)</th>
<th>TDS (g/litre)</th>
<th>Diss. Oxy (%)</th>
<th>Diss. Oxy (mg/l)</th>
<th>pH</th>
<th>Temp. (deg C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>41</td>
<td>0.053</td>
<td></td>
<td>4.87</td>
<td>7.89</td>
<td>10.76</td>
</tr>
<tr>
<td>10</td>
<td>41</td>
<td>0.053</td>
<td></td>
<td>4.57</td>
<td>7.8</td>
<td>10.74</td>
</tr>
<tr>
<td>15</td>
<td>41</td>
<td>0.053</td>
<td></td>
<td>4.5</td>
<td>7.72</td>
<td>10.64</td>
</tr>
<tr>
<td>20</td>
<td>41</td>
<td>0.052</td>
<td></td>
<td>5.04</td>
<td>7.7</td>
<td>10.34</td>
</tr>
<tr>
<td>25</td>
<td>41</td>
<td>0.053</td>
<td></td>
<td>6.59</td>
<td>7.69</td>
<td>9.98</td>
</tr>
<tr>
<td>30</td>
<td>42</td>
<td>0.053</td>
<td></td>
<td>7.61</td>
<td>7.68</td>
<td>9.15</td>
</tr>
<tr>
<td>35</td>
<td>43</td>
<td>0.055</td>
<td></td>
<td>8.91</td>
<td>7.69</td>
<td>7.87</td>
</tr>
<tr>
<td>40</td>
<td>43</td>
<td>0.057</td>
<td></td>
<td>10.15</td>
<td>7.7</td>
<td>5.81</td>
</tr>
<tr>
<td>45</td>
<td>43</td>
<td>0.058</td>
<td></td>
<td>10.44</td>
<td>7.71</td>
<td>4.83</td>
</tr>
<tr>
<td>50</td>
<td>43</td>
<td>0.059</td>
<td></td>
<td>10.42</td>
<td>7.71</td>
<td>4.56</td>
</tr>
<tr>
<td>55</td>
<td>43</td>
<td>0.06</td>
<td></td>
<td>10.22</td>
<td>7.71</td>
<td>4.42</td>
</tr>
<tr>
<td>60</td>
<td>43</td>
<td>0.061</td>
<td></td>
<td>10.18</td>
<td>7.71</td>
<td>4.31</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth (meters)</td>
<td>Sp. Cond. (μS/cm)</td>
<td>TDS (g/litre)</td>
<td>Diss. Oxy (%)</td>
<td>Diss. Oxy (mg/l)</td>
<td>pH</td>
<td>Temp. (deg C)</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------</td>
<td>--------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----</td>
<td>--------------</td>
</tr>
<tr>
<td>5</td>
<td>41</td>
<td>0.054</td>
<td>5.93</td>
<td>8.56</td>
<td>11.34</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>41</td>
<td>0.056</td>
<td>5.42</td>
<td>8.07</td>
<td>11.35</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>41</td>
<td>0.056</td>
<td>5.29</td>
<td>8.03</td>
<td>11.32</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>41</td>
<td>0.056</td>
<td>5.45</td>
<td>8.01</td>
<td>11.26</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>41</td>
<td>0.061</td>
<td>6.96</td>
<td>8.03</td>
<td>6.89</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>42</td>
<td>0.061</td>
<td>7.99</td>
<td>8.04</td>
<td>5.28</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>43</td>
<td>0.06</td>
<td>8.5</td>
<td>8.03</td>
<td>4.84</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>43</td>
<td>0.061</td>
<td>9.09</td>
<td>8.03</td>
<td>4.65</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>44</td>
<td>0.061</td>
<td>9.63</td>
<td>8.02</td>
<td>4.53</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>46</td>
<td>0.062</td>
<td>10.15</td>
<td>8.01</td>
<td>4.45</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>47</td>
<td>0.063</td>
<td>10.76</td>
<td>8.01</td>
<td>4.38</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>47</td>
<td>0.064</td>
<td>10.9</td>
<td>7.99</td>
<td>4.33</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth (meters)</td>
<td>Sp. Cond. (µS/cm)</td>
<td>TDS (g/litre)</td>
<td>Diss. Oxy (%)</td>
<td>Diss. Oxy (mg/l)</td>
<td>pH</td>
<td>Temp. (deg C)</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----</td>
<td>--------------</td>
</tr>
<tr>
<td>5</td>
<td>41</td>
<td>0.055</td>
<td>4.48</td>
<td>8.44</td>
<td>11.26</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>41</td>
<td>0.057</td>
<td>4.33</td>
<td>8.1</td>
<td>11.27</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>41</td>
<td>0.057</td>
<td>4.35</td>
<td>8.04</td>
<td>11.26</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>41</td>
<td>0.056</td>
<td>4.67</td>
<td>7.99</td>
<td>11.24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>41</td>
<td>0.056</td>
<td>5.5</td>
<td>7.96</td>
<td>10.87</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>43</td>
<td>0.057</td>
<td>6.75</td>
<td>7.95</td>
<td>9.08</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>42</td>
<td>0.06</td>
<td>8.96</td>
<td>7.96</td>
<td>6.49</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>42</td>
<td>0.06</td>
<td>9.63</td>
<td>7.96</td>
<td>5.53</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>42</td>
<td>0.06</td>
<td>9.97</td>
<td>7.95</td>
<td>5.18</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>47</td>
<td>0.061</td>
<td>10.33</td>
<td>7.95</td>
<td>4.88</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>48</td>
<td>0.062</td>
<td>10.63</td>
<td>7.94</td>
<td>4.69</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>48</td>
<td>0.064</td>
<td>11</td>
<td>7.93</td>
<td>4.59</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Slocan Lake Stewardship Society-Water Sampling Data Sheet

Site: #1 Downstream of Evans Ck., facing Cape Horn
Date: May-11
Time:
Samplers:
Elev.:
Temp.:
Lat.: 49° 48' 51" N
Weather:
Long.: 117° 28' 26" W
UTM: 0465876 5518092

<table>
<thead>
<tr>
<th>Depth (meters)</th>
<th>Sp. Cond. (μS/cm)</th>
<th>TDS (g/litre)</th>
<th>Diss. Oxy (%)</th>
<th>Diss. Oxy (mg/l)</th>
<th>pH</th>
<th>Temp (deg C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>150</td>
<td>0.075</td>
<td>100.8</td>
<td>10.78</td>
<td>7.49</td>
<td>9.18</td>
</tr>
<tr>
<td>10</td>
<td>150</td>
<td>0.074</td>
<td>99.5</td>
<td>10.82</td>
<td>7.19</td>
<td>8.72</td>
</tr>
<tr>
<td>15</td>
<td>150</td>
<td>0.072</td>
<td>104.6</td>
<td>11.47</td>
<td>7.15</td>
<td>8.14</td>
</tr>
<tr>
<td>20</td>
<td>150</td>
<td>0.073</td>
<td>103.3</td>
<td>11.55</td>
<td>7.16</td>
<td>7.48</td>
</tr>
<tr>
<td>25</td>
<td>150</td>
<td>0.074</td>
<td>996.9</td>
<td>11.35</td>
<td>7.18</td>
<td>6.27</td>
</tr>
<tr>
<td>30</td>
<td>150</td>
<td>0.075</td>
<td>92.5</td>
<td>10.74</td>
<td>7.19</td>
<td>5.92</td>
</tr>
<tr>
<td>35</td>
<td>150</td>
<td>0.076</td>
<td>95.7</td>
<td>11.07</td>
<td>7.21</td>
<td>5.56</td>
</tr>
<tr>
<td>40</td>
<td>160</td>
<td>0.078</td>
<td>94.3</td>
<td>11.17</td>
<td>7.22</td>
<td>6.15</td>
</tr>
<tr>
<td>45</td>
<td>160</td>
<td>0.079</td>
<td>92.7</td>
<td>11.13</td>
<td>7.23</td>
<td>4.81</td>
</tr>
<tr>
<td>50</td>
<td>160</td>
<td>0.08</td>
<td>89.9</td>
<td>10.89</td>
<td>7.24</td>
<td>4.71</td>
</tr>
<tr>
<td>55</td>
<td>170</td>
<td>0.083</td>
<td>87.8</td>
<td>10.57</td>
<td>7.24</td>
<td>4.44</td>
</tr>
<tr>
<td>60</td>
<td>170</td>
<td>0.087</td>
<td>87.8</td>
<td>10.98</td>
<td>7.28</td>
<td>4.24</td>
</tr>
</tbody>
</table>

Note: The table above provides data on water sampling at various depths, including measurements of specific conductivity (Sp. Cond.), total dissolved solids (TDS), dissolved oxygen (Diss. Oxy), pH, and temperature (Temp.).
Slocan Lake Stewardship Society-Water Sampling Data Sheet

Site: #1 Off of Enterprise Creek
Date: May 11, **Time**:
Weather:

Elev.	**Temp.**
Lat: 49° 51' 46" N
Long: 117° 26' 17" W
UTM: 0486494 5523483

<table>
<thead>
<tr>
<th>Depth (meters)</th>
<th>Sp. Cond. (µS/cm)</th>
<th>TDS (g/litre)</th>
<th>Diss. Oxy (%)</th>
<th>Diss. Oxy (mg/l)</th>
<th>pH</th>
<th>Temp (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>150</td>
<td>0.072</td>
<td>105.9</td>
<td>11.26</td>
<td>7.34</td>
<td>9.87</td>
</tr>
<tr>
<td>10</td>
<td>140</td>
<td>0.072</td>
<td>103.3</td>
<td>11.39</td>
<td>7.36</td>
<td>8.53</td>
</tr>
<tr>
<td>15</td>
<td>150</td>
<td>0.073</td>
<td>104.2</td>
<td>11.6</td>
<td>7.37</td>
<td>7.89</td>
</tr>
<tr>
<td>20</td>
<td>150</td>
<td>0.074</td>
<td>105.1</td>
<td>11.83</td>
<td>7.38</td>
<td>7.58</td>
</tr>
<tr>
<td>25</td>
<td>150</td>
<td>0.074</td>
<td>106.6</td>
<td>11.83</td>
<td>7.4</td>
<td>6.86</td>
</tr>
<tr>
<td>30</td>
<td>150</td>
<td>0.075</td>
<td>94.9</td>
<td>11.38</td>
<td>7.42</td>
<td>5.96</td>
</tr>
<tr>
<td>35</td>
<td>150</td>
<td>0.076</td>
<td>89.7</td>
<td>10.62</td>
<td>7.44</td>
<td>5.36</td>
</tr>
<tr>
<td>40</td>
<td>160</td>
<td>0.078</td>
<td>93.8</td>
<td>11.24</td>
<td>7.45</td>
<td>4.91</td>
</tr>
<tr>
<td>45</td>
<td>160</td>
<td>0.081</td>
<td>92.5</td>
<td>11.23</td>
<td>7.46</td>
<td>4.7</td>
</tr>
<tr>
<td>50</td>
<td>170</td>
<td>0.083</td>
<td>93</td>
<td>11.25</td>
<td>7.46</td>
<td>4.53</td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Slocan Lake Stewardship Society-Water Sampling Data Sheet

Site: #3 Off Wee Sandy Creek
Date: May-11
Time:
Samplers:
Elev.
Temp.
Lat: 50° 00' 35" N
Weather:
Long: 117° 24' 39" W
UTM: 0470669 5539776

<table>
<thead>
<tr>
<th>Depth (meters)</th>
<th>Sp. Cond. (μS/cm)</th>
<th>TDS (g/litre)</th>
<th>Diss. Oxy (%)</th>
<th>Diss. Oxy (mg/l)</th>
<th>pH</th>
<th>Temp (deg C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>130</td>
<td>0.067</td>
<td>11.4</td>
<td>11.86</td>
<td>7.85</td>
<td>9.24</td>
</tr>
<tr>
<td>10</td>
<td>130</td>
<td>0.065</td>
<td>106.7</td>
<td>11.83</td>
<td>7.82</td>
<td>7.87</td>
</tr>
<tr>
<td>15</td>
<td>130</td>
<td>0.065</td>
<td>106.7</td>
<td>12.07</td>
<td>7.81</td>
<td>7.24</td>
</tr>
<tr>
<td>20</td>
<td>140</td>
<td>0.068</td>
<td>100.7</td>
<td>11.66</td>
<td>7.79</td>
<td>6.18</td>
</tr>
<tr>
<td>25</td>
<td>140</td>
<td>0.07</td>
<td>100.1</td>
<td>11.8</td>
<td>7.78</td>
<td>5.76</td>
</tr>
<tr>
<td>30</td>
<td>150</td>
<td>0.073</td>
<td>101.5</td>
<td>12.07</td>
<td>7.79</td>
<td>5.04</td>
</tr>
<tr>
<td>35</td>
<td>160</td>
<td>0.077</td>
<td>99.2</td>
<td>12.04</td>
<td>7.79</td>
<td>4.73</td>
</tr>
<tr>
<td>40</td>
<td>160</td>
<td>0.079</td>
<td>97.8</td>
<td>11.84</td>
<td>7.79</td>
<td>4.57</td>
</tr>
<tr>
<td>45</td>
<td>160</td>
<td>0.082</td>
<td>96.4</td>
<td>11.8</td>
<td>7.78</td>
<td>4.44</td>
</tr>
<tr>
<td>50</td>
<td>170</td>
<td>0.086</td>
<td>98.3</td>
<td>11.96</td>
<td>7.78</td>
<td>4.34</td>
</tr>
<tr>
<td>55</td>
<td>180</td>
<td>0.088</td>
<td>97.3</td>
<td>11.92</td>
<td>7.78</td>
<td>4.27</td>
</tr>
<tr>
<td>60</td>
<td>180</td>
<td>0.09</td>
<td>94.3</td>
<td>11.6</td>
<td>7.77</td>
<td>4.23</td>
</tr>
</tbody>
</table>
Slocan Lake Stewardship Society-Water Sampling Data Sheet

Site: #4 Off Shannon Creek
Date: May 11
Time:
Samplers:
Elev.:
Temp.:
Lat.: 50° 04' 20" N
Weather:
Long.: 117° 27' 22" W
UTM:

<table>
<thead>
<tr>
<th>Depth (meters)</th>
<th>Sp. Cond. (µS/cm)</th>
<th>TDS (g/litre)</th>
<th>Diss. Oxy (%)</th>
<th>pH</th>
<th>Temp. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>140</td>
<td>0.071</td>
<td>105.4</td>
<td>11.48</td>
<td>7.83</td>
</tr>
<tr>
<td>10</td>
<td>140</td>
<td>0.099</td>
<td>105.2</td>
<td>11.69</td>
<td>7.73</td>
</tr>
<tr>
<td>15</td>
<td>140</td>
<td>0.089</td>
<td>102.9</td>
<td>11.65</td>
<td>7.72</td>
</tr>
<tr>
<td>20</td>
<td>140</td>
<td>0.07</td>
<td>102.6</td>
<td>11.9</td>
<td>7.72</td>
</tr>
<tr>
<td>25</td>
<td>140</td>
<td>0.071</td>
<td>100.7</td>
<td>11.67</td>
<td>7.72</td>
</tr>
<tr>
<td>30</td>
<td>150</td>
<td>0.072</td>
<td>98</td>
<td>11.65</td>
<td>7.73</td>
</tr>
<tr>
<td>35</td>
<td>150</td>
<td>0.075</td>
<td>98.3</td>
<td>11.78</td>
<td>7.74</td>
</tr>
<tr>
<td>40</td>
<td>160</td>
<td>0.077</td>
<td>91.8</td>
<td>10.66</td>
<td>7.74</td>
</tr>
<tr>
<td>45</td>
<td>160</td>
<td>0.081</td>
<td>91.6</td>
<td>11.5</td>
<td>7.74</td>
</tr>
<tr>
<td>50</td>
<td>170</td>
<td>0.083</td>
<td>90.3</td>
<td>10.9</td>
<td>7.73</td>
</tr>
<tr>
<td>55</td>
<td>170</td>
<td>0.086</td>
<td>88.4</td>
<td>10.77</td>
<td>7.73</td>
</tr>
<tr>
<td>60</td>
<td>180</td>
<td>0.089</td>
<td>87.9</td>
<td>10.9</td>
<td>7.73</td>
</tr>
<tr>
<td>Depth (meters)</td>
<td>Sp. Cond. (µS/cm)</td>
<td>TDS (g/litre)</td>
<td>Diss. Oxy (%)</td>
<td>Diss. Oxy (mg/l)</td>
<td>pH</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------</td>
<td>--------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----</td>
</tr>
<tr>
<td>5</td>
<td>137</td>
<td>0.069</td>
<td>111.9</td>
<td>11.39</td>
<td>7.14</td>
</tr>
<tr>
<td>10</td>
<td>139</td>
<td>0.069</td>
<td>112.5</td>
<td>11.93</td>
<td>7.04</td>
</tr>
<tr>
<td>15</td>
<td>138</td>
<td>0.069</td>
<td>111.4</td>
<td>11.80</td>
<td>6.99</td>
</tr>
<tr>
<td>20</td>
<td>140</td>
<td>0.070</td>
<td>106.1</td>
<td>11.64</td>
<td>6.99</td>
</tr>
<tr>
<td>25</td>
<td>144</td>
<td>0.072</td>
<td>101.6</td>
<td>11.11</td>
<td>7.00</td>
</tr>
<tr>
<td>30</td>
<td>147</td>
<td>0.074</td>
<td>97.6</td>
<td>11.52</td>
<td>7.02</td>
</tr>
<tr>
<td>35</td>
<td>153</td>
<td>0.077</td>
<td>92.3</td>
<td>10.80</td>
<td>7.06</td>
</tr>
<tr>
<td>40</td>
<td>159</td>
<td>0.080</td>
<td>90.0</td>
<td>10.55</td>
<td>7.08</td>
</tr>
<tr>
<td>45</td>
<td>164</td>
<td>0.082</td>
<td>93.3</td>
<td>11.03</td>
<td>7.09</td>
</tr>
<tr>
<td>50</td>
<td>169</td>
<td>0.085</td>
<td>90.0</td>
<td>10.84</td>
<td>7.11</td>
</tr>
<tr>
<td>55</td>
<td>174</td>
<td>0.088</td>
<td>89.0</td>
<td>10.78</td>
<td>7.12</td>
</tr>
<tr>
<td>60</td>
<td>181</td>
<td>0.091</td>
<td>88.9</td>
<td>10.78</td>
<td>7.13</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Slocan Lake Stewardship Society-Water Sampling Data Sheet

Site
- #2 Off of Enterprise Creek

Date: 28-Jun-11
Time:

Samplers:

Elev.
Lat: 49° 51' 46" N
Long: 117° 26' 17" W
Weather:

UTM: 0486494 5523483

<table>
<thead>
<tr>
<th>Depth (meters)</th>
<th>Sp. Cond. (µS/cm)</th>
<th>TDS (g/litre)</th>
<th>Diss. Oxy (%)</th>
<th>Diss. Oxy (mg/l)</th>
<th>pH</th>
<th>Temp. (deg C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>136</td>
<td>0.068</td>
<td>112.4</td>
<td>11.38</td>
<td>7.34</td>
<td>11.46</td>
</tr>
<tr>
<td>10</td>
<td>134</td>
<td>0.067</td>
<td>106.6</td>
<td>11.26</td>
<td>7.29</td>
<td>9.72</td>
</tr>
<tr>
<td>15</td>
<td>136</td>
<td>0.068</td>
<td>104.6</td>
<td>11.24</td>
<td>7.30</td>
<td>8.87</td>
</tr>
<tr>
<td>20</td>
<td>139</td>
<td>0.070</td>
<td>102.6</td>
<td>11.10</td>
<td>7.32</td>
<td>7.88</td>
</tr>
<tr>
<td>25</td>
<td>142</td>
<td>0.071</td>
<td>101.9</td>
<td>11.32</td>
<td>7.34</td>
<td>7.25</td>
</tr>
<tr>
<td>30</td>
<td>146</td>
<td>0.073</td>
<td>98.6</td>
<td>11.30</td>
<td>7.35</td>
<td>6.58</td>
</tr>
<tr>
<td>35</td>
<td>149</td>
<td>0.075</td>
<td>98.0</td>
<td>11.39</td>
<td>7.37</td>
<td>6.06</td>
</tr>
<tr>
<td>40</td>
<td>156</td>
<td>0.078</td>
<td>91.7</td>
<td>10.87</td>
<td>7.38</td>
<td>5.34</td>
</tr>
<tr>
<td>45</td>
<td>160</td>
<td>0.080</td>
<td>88.4</td>
<td>10.50</td>
<td>7.39</td>
<td>4.99</td>
</tr>
<tr>
<td>50</td>
<td>165</td>
<td>0.083</td>
<td>91.6</td>
<td>11.03</td>
<td>7.39</td>
<td>4.69</td>
</tr>
<tr>
<td>55</td>
<td>172</td>
<td>0.086</td>
<td>93.1</td>
<td>11.27</td>
<td>7.40</td>
<td>4.46</td>
</tr>
<tr>
<td>60</td>
<td>177</td>
<td>0.088</td>
<td>90.8</td>
<td>10.86</td>
<td>7.40</td>
<td>4.24</td>
</tr>
<tr>
<td>65</td>
<td>182</td>
<td>0.091</td>
<td>91.9</td>
<td>11.37</td>
<td>7.41</td>
<td>4.11</td>
</tr>
<tr>
<td>70</td>
<td>187</td>
<td>0.094</td>
<td>91.7</td>
<td>11.27</td>
<td>7.41</td>
<td>4.05</td>
</tr>
<tr>
<td>75</td>
<td>193</td>
<td>0.097</td>
<td>90.7</td>
<td>11.24</td>
<td>7.41</td>
<td>4.01</td>
</tr>
<tr>
<td>80</td>
<td>200</td>
<td>0.100</td>
<td>87.5</td>
<td>10.85</td>
<td>7.41</td>
<td>3.97</td>
</tr>
<tr>
<td>85</td>
<td>204</td>
<td>0.102</td>
<td>87.0</td>
<td>10.97</td>
<td>7.41</td>
<td>3.92</td>
</tr>
<tr>
<td>90</td>
<td>208</td>
<td>0.104</td>
<td>87.4</td>
<td>11.02</td>
<td>7.42</td>
<td>3.89</td>
</tr>
<tr>
<td>95</td>
<td>213</td>
<td>0.107</td>
<td>87.1</td>
<td>10.70</td>
<td>7.42</td>
<td>3.88</td>
</tr>
<tr>
<td>100</td>
<td>215</td>
<td>0.108</td>
<td>82.5</td>
<td>10.36</td>
<td>7.42</td>
<td>3.86</td>
</tr>
</tbody>
</table>
Slocan Lake Stewardship Society-Water Sampling Data Sheet

Site: #3 Off Wee Sandy Creek
Date: 28-Jun-11
Time:
Elev.
Lat: 50° 00' 35" N
Long: 117° 24' 39" W
Temp.:
Weather:
UTM: 0470669 5539776

<table>
<thead>
<tr>
<th>Depth (meters)</th>
<th>Sp. Cond. (µS/cm)</th>
<th>TDS (g/litre)</th>
<th>Diss. Oxy (%)</th>
<th>Diss. Oxy (mg/l)</th>
<th>pH</th>
<th>Temp. (deg C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>126</td>
<td>0.063</td>
<td>115.8</td>
<td>11.67</td>
<td>7.65</td>
<td>11.53</td>
</tr>
<tr>
<td>10</td>
<td>123</td>
<td>0.061</td>
<td>111.3</td>
<td>11.63</td>
<td>7.60</td>
<td>10.11</td>
</tr>
<tr>
<td>15</td>
<td>123</td>
<td>0.061</td>
<td>106.5</td>
<td>11.59</td>
<td>6.62</td>
<td>8.79</td>
</tr>
<tr>
<td>20</td>
<td>126</td>
<td>0.063</td>
<td>107.3</td>
<td>11.79</td>
<td>7.62</td>
<td>8.21</td>
</tr>
<tr>
<td>25</td>
<td>131</td>
<td>0.066</td>
<td>106.4</td>
<td>11.86</td>
<td>7.63</td>
<td>7.19</td>
</tr>
<tr>
<td>30</td>
<td>139</td>
<td>0.070</td>
<td>103.0</td>
<td>11.80</td>
<td>7.62</td>
<td>6.43</td>
</tr>
<tr>
<td>35</td>
<td>146</td>
<td>0.073</td>
<td>103.7</td>
<td>12.27</td>
<td>7.62</td>
<td>5.46</td>
</tr>
<tr>
<td>40</td>
<td>153</td>
<td>0.076</td>
<td>100.8</td>
<td>12.08</td>
<td>7.63</td>
<td>4.82</td>
</tr>
<tr>
<td>45</td>
<td>158</td>
<td>0.079</td>
<td>98.8</td>
<td>11.94</td>
<td>7.63</td>
<td>4.61</td>
</tr>
<tr>
<td>50</td>
<td>163</td>
<td>0.082</td>
<td>99.6</td>
<td>11.98</td>
<td>7.64</td>
<td>4.45</td>
</tr>
<tr>
<td>55</td>
<td>168</td>
<td>0.084</td>
<td>97.8</td>
<td>11.88</td>
<td>7.64</td>
<td>4.34</td>
</tr>
<tr>
<td>60</td>
<td>173</td>
<td>0.087</td>
<td>98.7</td>
<td>11.99</td>
<td>7.64</td>
<td>4.27</td>
</tr>
<tr>
<td>65</td>
<td>183</td>
<td>0.091</td>
<td>96.7</td>
<td>11.82</td>
<td>7.63</td>
<td>4.22</td>
</tr>
<tr>
<td>70</td>
<td>187</td>
<td>0.094</td>
<td>97.8</td>
<td>11.87</td>
<td>7.63</td>
<td>4.14</td>
</tr>
<tr>
<td>75</td>
<td>193</td>
<td>0.096</td>
<td>97.3</td>
<td>11.88</td>
<td>7.63</td>
<td>4.09</td>
</tr>
<tr>
<td>80</td>
<td>197</td>
<td>0.099</td>
<td>96.5</td>
<td>11.77</td>
<td>7.63</td>
<td>4.04</td>
</tr>
<tr>
<td>85</td>
<td>201</td>
<td>0.101</td>
<td>96.5</td>
<td>11.74</td>
<td>7.63</td>
<td>4.02</td>
</tr>
<tr>
<td>90</td>
<td>205</td>
<td>0.103</td>
<td>97.3</td>
<td>11.94</td>
<td>7.63</td>
<td>4.01</td>
</tr>
<tr>
<td>95</td>
<td>207</td>
<td>0.104</td>
<td>96.4</td>
<td>11.80</td>
<td>7.63</td>
<td>4.00</td>
</tr>
<tr>
<td>100</td>
<td>208</td>
<td>0.104</td>
<td>95.8</td>
<td>11.68</td>
<td>7.62</td>
<td>3.99</td>
</tr>
<tr>
<td>Depth (meters)</td>
<td>Sp. Cond. (µS/cm)</td>
<td>TDS (g/litre)</td>
<td>Diss. Oxy (%)</td>
<td>Diss. Oxy (mg/l)</td>
<td>pH</td>
<td>Temp. (deg C)</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----</td>
<td>--------------</td>
</tr>
<tr>
<td>5</td>
<td>135</td>
<td>0.065</td>
<td>119.5</td>
<td>11.88</td>
<td>7.54</td>
<td>12.21</td>
</tr>
<tr>
<td>10</td>
<td>131</td>
<td>0.065</td>
<td>114.7</td>
<td>11.97</td>
<td>7.42</td>
<td>10.22</td>
</tr>
<tr>
<td>15</td>
<td>130</td>
<td>0.064</td>
<td>110.6</td>
<td>11.70</td>
<td>7.45</td>
<td>9.33</td>
</tr>
<tr>
<td>20</td>
<td>133</td>
<td>0.066</td>
<td>106.9</td>
<td>11.72</td>
<td>7.47</td>
<td>8.46</td>
</tr>
<tr>
<td>25</td>
<td>138</td>
<td>0.069</td>
<td>105.7</td>
<td>11.94</td>
<td>7.49</td>
<td>6.88</td>
</tr>
<tr>
<td>30</td>
<td>144</td>
<td>0.072</td>
<td>101.4</td>
<td>11.98</td>
<td>7.50</td>
<td>5.59</td>
</tr>
<tr>
<td>35</td>
<td>150</td>
<td>0.075</td>
<td>99.5</td>
<td>11.70</td>
<td>7.51</td>
<td>4.88</td>
</tr>
<tr>
<td>40</td>
<td>158</td>
<td>0.079</td>
<td>99.1</td>
<td>11.99</td>
<td>7.52</td>
<td>4.60</td>
</tr>
<tr>
<td>45</td>
<td>163</td>
<td>0.082</td>
<td>97.5</td>
<td>11.82</td>
<td>7.52</td>
<td>4.44</td>
</tr>
<tr>
<td>50</td>
<td>168</td>
<td>0.085</td>
<td>94.5</td>
<td>11.60</td>
<td>7.53</td>
<td>4.33</td>
</tr>
<tr>
<td>55</td>
<td>176</td>
<td>0.088</td>
<td>95.8</td>
<td>11.79</td>
<td>7.53</td>
<td>4.24</td>
</tr>
<tr>
<td>60</td>
<td>183</td>
<td>0.092</td>
<td>95.3</td>
<td>11.70</td>
<td>7.54</td>
<td>4.14</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Slocan Lake Stewardship Society-Water Sampling Data Sheet

Site: #1 Downstream of Evans Ck., facing Cape Horn
Date: July 28, 2011
Time:
Samplers: Richard Johnson, Hank Hastings, John Conklin
Temp:
Lat: 49° 48' 51" N
Weather:
Long: 117° 28' 26" W
UTM: 0465876 5518092

<table>
<thead>
<tr>
<th>Depth (meters)</th>
<th>Sp. Cond. (μS/cm)</th>
<th>TDS (g/litre)</th>
<th>Diss. Oxy (%)</th>
<th>Diss. Oxy (mg/l)</th>
<th>pH</th>
<th>Temp (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>84</td>
<td>0.042</td>
<td>110.0</td>
<td>10.41</td>
<td>7.34</td>
<td>15.57</td>
</tr>
<tr>
<td>10</td>
<td>88</td>
<td>0.044</td>
<td>119.0</td>
<td>12.05</td>
<td>7.32</td>
<td>12.12</td>
</tr>
<tr>
<td>15</td>
<td>88</td>
<td>0.044</td>
<td>114.0</td>
<td>11.92</td>
<td>7.34</td>
<td>10.78</td>
</tr>
<tr>
<td>20</td>
<td>98</td>
<td>0.045</td>
<td>108.1</td>
<td>11.67</td>
<td>7.39</td>
<td>9.72</td>
</tr>
<tr>
<td>25</td>
<td>93</td>
<td>0.046</td>
<td>107.2</td>
<td>11.77</td>
<td>7.45</td>
<td>8.49</td>
</tr>
<tr>
<td>30</td>
<td>98</td>
<td>0.049</td>
<td>102.7</td>
<td>11.88</td>
<td>7.48</td>
<td>6.94</td>
</tr>
<tr>
<td>35</td>
<td>101</td>
<td>0.050</td>
<td>101.6</td>
<td>12.07</td>
<td>7.52</td>
<td>5.44</td>
</tr>
<tr>
<td>40</td>
<td>103</td>
<td>0.052</td>
<td>97.4</td>
<td>11.84</td>
<td>7.54</td>
<td>4.78</td>
</tr>
<tr>
<td>45</td>
<td>107</td>
<td>0.053</td>
<td>95.8</td>
<td>11.67</td>
<td>7.56</td>
<td>4.56</td>
</tr>
<tr>
<td>50</td>
<td>109</td>
<td>0.055</td>
<td>96.0</td>
<td>11.80</td>
<td>7.57</td>
<td>4.43</td>
</tr>
<tr>
<td>55</td>
<td>133</td>
<td>0.057</td>
<td>94.2</td>
<td>11.60</td>
<td>7.58</td>
<td>4.21</td>
</tr>
<tr>
<td>60</td>
<td>118</td>
<td>0.059</td>
<td>91.2</td>
<td>11.30</td>
<td>7.60</td>
<td>4.04</td>
</tr>
</tbody>
</table>

65 Surface temperature = 17 degrees.
70 Hanna meter failed after these readings.
<table>
<thead>
<tr>
<th>Depth (meters)</th>
<th>Sp. Cond. (μS/cm)</th>
<th>TDS (g/litre)</th>
<th>Diss. Oxy (%)</th>
<th>Diss. Oxy (mg/l)</th>
<th>pH</th>
<th>Temp. (deg C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>79</td>
<td>0.051</td>
<td>105.2</td>
<td>9.75</td>
<td>8.02</td>
<td>18.80</td>
</tr>
<tr>
<td>10</td>
<td>85</td>
<td>0.055</td>
<td>111.4</td>
<td>11.22</td>
<td>8.10</td>
<td>15.01</td>
</tr>
<tr>
<td>15</td>
<td>82</td>
<td>0.057</td>
<td>111.1</td>
<td>12.16</td>
<td>8.04</td>
<td>11.44</td>
</tr>
<tr>
<td>20</td>
<td>92</td>
<td>0.060</td>
<td>105.3</td>
<td>12.21</td>
<td>7.90</td>
<td>9.13</td>
</tr>
<tr>
<td>25</td>
<td>96</td>
<td>0.062</td>
<td>99.2</td>
<td>11.75</td>
<td>7.82</td>
<td>8.90</td>
</tr>
<tr>
<td>30</td>
<td>93</td>
<td>0.063</td>
<td>97.7</td>
<td>11.91</td>
<td>7.80</td>
<td>6.48</td>
</tr>
<tr>
<td>35</td>
<td>99</td>
<td>0.064</td>
<td>92.6</td>
<td>11.68</td>
<td>7.71</td>
<td>5.38</td>
</tr>
<tr>
<td>40</td>
<td>99</td>
<td>0.064</td>
<td>89.0</td>
<td>11.39</td>
<td>7.71</td>
<td>4.86</td>
</tr>
<tr>
<td>45</td>
<td>99</td>
<td>0.064</td>
<td>88.2</td>
<td>11.40</td>
<td>7.68</td>
<td>4.49</td>
</tr>
<tr>
<td>50</td>
<td>99</td>
<td>0.064</td>
<td>87.3</td>
<td>11.33</td>
<td>7.65</td>
<td>4.32</td>
</tr>
<tr>
<td>55</td>
<td>99</td>
<td>0.064</td>
<td>86.7</td>
<td>11.29</td>
<td>7.65</td>
<td>4.22</td>
</tr>
<tr>
<td>60</td>
<td>99</td>
<td>0.064</td>
<td>86.2</td>
<td>11.25</td>
<td>7.63</td>
<td>4.13</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Surface water temp. = 19.83</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Slocan Lake Stewardship Society-Water Sampling Data Sheet

Site
#2 Off of Enterprise Creek

Date: 30-ago-11
Time: 10:43 AM

Samplers:
- **Elev.**
- **Lat:** 49° 51' 46" N
 Temp.:
- **Long:** 117° 26' 17" W
 Weather: clear and warm
- **UTM:** 0486494 5523483

## Depth (meters)	Sp. Cond. (µS/cm)	TDS (g/litre)	Diss. Oxy (%)	Diss. Oxy (mg/l)	pH	Temp. (deg C)
5 | 82 | 0.053 | 107.3 | 10.03 | 8.06 | 18.7
10 | 86 | 0.056 | 109.2 | 10.68 | 8.11 | 16.53
15 | 84 | 0.057 | 109.5 | 11.35 | 8.04 | 13.77
20 | 89 | 0.057 | 108.4 | 11.80 | 7.91 | 11.7
25 | 90 | 0.058 | 106.4 | 11.86 | 7.89 | 10.52
30 | 89 | 0.060 | 103.5 | 11.94 | 7.80 | 8.91
35 | 96 | 0.062 | 98.2 | 11.73 | 7.73 | 7.55
40 | 97 | 0.063 | 95.3 | 11.70 | 7.72 | 6.26
45 | 99 | 0.064 | 92.6 | 11.62 | 7.69 | 5.62
50 | 99 | 0.064 | 90.8 | 11.48 | 7.65 | 5.44
55 | 99 | 0.064 | 90.0 | 11.50 | 7.64 | 4.94
60 | 99 | 0.064 | 89.0 | 11.49 | 7.67 | 4.56
65
70
75
80
85
90
95
100
Slocan Lake Stewardship Society-Water Sampling Data Sheet

Site: #4 Off Shannon Creek
Date: 30-aug-11
Time: 12:20PM

Samplers:
- **Elev.:**
- **Lat.:** 50° 04' 20" N
- **Long.:** 117° 27' 22" W
- **Temp.:**
- **Weather:** windy
- **UTM:**

<table>
<thead>
<tr>
<th>Depth (meters)</th>
<th>Sp. Cond. (µS/cm)</th>
<th>TDS (g/litre)</th>
<th>Diss. Oxy (%)</th>
<th>Diss. Oxy (mg/l)</th>
<th>pH</th>
<th>Temp. (deg C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>92</td>
<td>0.060</td>
<td>105.1</td>
<td>10.27</td>
<td>8.11</td>
<td>16.51</td>
</tr>
<tr>
<td>10</td>
<td>92</td>
<td>0.060</td>
<td>106.2</td>
<td>10.40</td>
<td>8.08</td>
<td>16.31</td>
</tr>
<tr>
<td>15</td>
<td>91</td>
<td>0.059</td>
<td>107.2</td>
<td>11.51</td>
<td>8.06</td>
<td>11.25</td>
</tr>
<tr>
<td>20</td>
<td>89</td>
<td>0.058</td>
<td>102.8</td>
<td>11.50</td>
<td>7.77</td>
<td>10.36</td>
</tr>
<tr>
<td>25</td>
<td>90</td>
<td>0.058</td>
<td>102.7</td>
<td>11.06</td>
<td>7.77</td>
<td>10.26</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35 Surface water temp. = 19.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

40
45
50
55
60
65
70
75
80
85
90
95
100
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>meters</td>
<td>µS/cm</td>
<td>g/litre</td>
<td>%</td>
<td>mg/l</td>
<td>deg C</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>90</td>
<td>0.059</td>
<td>107</td>
<td>11.04</td>
<td>7.85</td>
<td>13.94</td>
</tr>
<tr>
<td>10</td>
<td>91</td>
<td>0.059</td>
<td>107</td>
<td>11.11</td>
<td>7.85</td>
<td>13.60</td>
</tr>
<tr>
<td>15</td>
<td>91</td>
<td>0.059</td>
<td>107</td>
<td>11.25</td>
<td>7.86</td>
<td>13.06</td>
</tr>
<tr>
<td>20</td>
<td>93</td>
<td>0.061</td>
<td>106</td>
<td>11.70</td>
<td>7.81</td>
<td>10.85</td>
</tr>
<tr>
<td>25</td>
<td>94</td>
<td>0.061</td>
<td>105</td>
<td>11.74</td>
<td>7.74</td>
<td>10.38</td>
</tr>
<tr>
<td>30</td>
<td>95</td>
<td>0.062</td>
<td>104</td>
<td>11.76</td>
<td>7.70</td>
<td>9.81</td>
</tr>
<tr>
<td>35</td>
<td>97</td>
<td>0.063</td>
<td>101</td>
<td>11.88</td>
<td>7.62</td>
<td>8.35</td>
</tr>
<tr>
<td>40</td>
<td>97</td>
<td>0.063</td>
<td>100.5</td>
<td>11.87</td>
<td>7.62</td>
<td>8.06</td>
</tr>
<tr>
<td>45</td>
<td>98</td>
<td>0.064</td>
<td>98.8</td>
<td>11.86</td>
<td>7.60</td>
<td>7.40</td>
</tr>
<tr>
<td>50</td>
<td>98</td>
<td>0.064</td>
<td>97.8</td>
<td>11.83</td>
<td>7.62</td>
<td>7.20</td>
</tr>
<tr>
<td>55</td>
<td>99</td>
<td>0.064</td>
<td>97.1</td>
<td>11.84</td>
<td>7.61</td>
<td>6.85</td>
</tr>
<tr>
<td>60</td>
<td>100</td>
<td>0.065</td>
<td>93.6</td>
<td>11.80</td>
<td>7.59</td>
<td>5.34</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth (meters)</td>
<td>Sp. Cond. (µS/cm)</td>
<td>TDS (g/litre)</td>
<td>Diss. Oxy (%)</td>
<td>Diss. Oxy (mg/l)</td>
<td>pH</td>
<td>Temp. (deg C)</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>---------------</td>
<td>----------------</td>
<td>----</td>
<td>--------------</td>
</tr>
<tr>
<td>5</td>
<td>90</td>
<td>0.059</td>
<td>112.1</td>
<td>11.30</td>
<td>7.94</td>
<td>14.95</td>
</tr>
<tr>
<td>10</td>
<td>90</td>
<td>0.059</td>
<td>111.2</td>
<td>11.59</td>
<td>7.94</td>
<td>13.44</td>
</tr>
<tr>
<td>15</td>
<td>93</td>
<td>0.061</td>
<td>109.1</td>
<td>12.22</td>
<td>7.82</td>
<td>10.15</td>
</tr>
<tr>
<td>20</td>
<td>97</td>
<td>0.063</td>
<td>103.2</td>
<td>12.29</td>
<td>7.71</td>
<td>7.69</td>
</tr>
<tr>
<td>25</td>
<td>99</td>
<td>0.064</td>
<td>100.3</td>
<td>12.24</td>
<td>7.66</td>
<td>6.79</td>
</tr>
<tr>
<td>30</td>
<td>100</td>
<td>0.065</td>
<td>97.0</td>
<td>12.14</td>
<td>7.63</td>
<td>5.80</td>
</tr>
<tr>
<td>35</td>
<td>101</td>
<td>0.065</td>
<td>94.7</td>
<td>12.06</td>
<td>7.60</td>
<td>5.02</td>
</tr>
<tr>
<td>40</td>
<td>101</td>
<td>0.066</td>
<td>92.7</td>
<td>11.92</td>
<td>7.57</td>
<td>4.61</td>
</tr>
<tr>
<td>45</td>
<td>101</td>
<td>0.066</td>
<td>91.4</td>
<td>11.85</td>
<td>7.56</td>
<td>4.36</td>
</tr>
<tr>
<td>50</td>
<td>101</td>
<td>0.066</td>
<td>90.4</td>
<td>11.77</td>
<td>7.55</td>
<td>4.21</td>
</tr>
<tr>
<td>55</td>
<td>101</td>
<td>0.066</td>
<td>89.9</td>
<td>11.73</td>
<td>7.54</td>
<td>4.12</td>
</tr>
<tr>
<td>60</td>
<td>101</td>
<td>0.066</td>
<td>89.6</td>
<td>11.72</td>
<td>7.53</td>
<td>4.06</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Slocan Lake Stewardship Society-Water Sampling Data Sheet

Site: #1 Downstream of Evans Ck., facing Cape Horn
Date: 25-Oct-11
Time:
Samplers: John Conklin, Hank Hastings
Elev.
Temp.
Lat: 49° 48' 51" N
Weather:
Long: 117° 28' 26" W
UTM: 0465876 5518092
Calculated Sp. Cond. SC=(105-(C-58)/.88)

<table>
<thead>
<tr>
<th>Depth (meters)</th>
<th>Sp. Cond. (µS/cm)</th>
<th>TDS (g/litre)</th>
<th>Diss. Oxy (%)</th>
<th>Diss. Oxy (mg/l)</th>
<th>pH</th>
<th>Temp. (deg C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>66</td>
<td>0.058</td>
<td>94.1</td>
<td>10.19</td>
<td>8.13</td>
<td>11.51</td>
</tr>
<tr>
<td>10</td>
<td>66</td>
<td>0.058</td>
<td>93.1</td>
<td>10.14</td>
<td>8.09</td>
<td>11.51</td>
</tr>
<tr>
<td>15</td>
<td>66</td>
<td>0.058</td>
<td>93.0</td>
<td>10.13</td>
<td>8.05</td>
<td>11.50</td>
</tr>
<tr>
<td>20</td>
<td>66</td>
<td>0.058</td>
<td>93.3</td>
<td>10.14</td>
<td>8.02</td>
<td>10.52</td>
</tr>
<tr>
<td>25</td>
<td>66</td>
<td>0.058</td>
<td>929.0</td>
<td>10.10</td>
<td>8.00</td>
<td>11.54</td>
</tr>
<tr>
<td>30</td>
<td>67</td>
<td>0.059</td>
<td>93.6</td>
<td>10.57</td>
<td>7.93</td>
<td>10.18</td>
</tr>
</tbody>
</table>

35.30 meter cable on rented meter
40. Above is Conductivity not Sp Cond.
45
50
55
60
65
70
75
80
85
90
95
100
<table>
<thead>
<tr>
<th>Depth (meters)</th>
<th>Sp. Cond. (µS/cm)</th>
<th>TDS (g/litre)</th>
<th>Diss. Oxy (%)</th>
<th>Diss. Oxy (mg/l)</th>
<th>pH</th>
<th>Temp. (°C)</th>
<th>Calculated Sp. Cond.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>67</td>
<td>0.058</td>
<td>87.5</td>
<td>9.40</td>
<td>7.91</td>
<td>11.97</td>
<td>95</td>
</tr>
<tr>
<td>10</td>
<td>67</td>
<td>0.058</td>
<td>86.7</td>
<td>9.34</td>
<td>7.94</td>
<td>12.00</td>
<td>95</td>
</tr>
<tr>
<td>15</td>
<td>67</td>
<td>0.058</td>
<td>86.1</td>
<td>9.28</td>
<td>7.96</td>
<td>12.00</td>
<td>95</td>
</tr>
<tr>
<td>20</td>
<td>68</td>
<td>0.060</td>
<td>87.2</td>
<td>9.58</td>
<td>7.89</td>
<td>11.32</td>
<td>94</td>
</tr>
<tr>
<td>25</td>
<td>65</td>
<td>0.061</td>
<td>84.8</td>
<td>9.81</td>
<td>7.84</td>
<td>9.00</td>
<td>97</td>
</tr>
<tr>
<td>30</td>
<td>64</td>
<td>0.063</td>
<td>81.6</td>
<td>9.82</td>
<td>7.77</td>
<td>7.27</td>
<td>98</td>
</tr>
</tbody>
</table>

I believe the entries for Specific conductance are Conductance without temperature correction. Use sample data from other days to correct to 25° C.
Slocan Lake Stewardship Society-Water Sampling Data Sheet

Site: #3 Off Wee Sandy Creek
Date: 25-Oct-11
Samples: Conklin, Hastings
Elev.:
Lat.: 50° 00' 35" N
Long.: 117° 24' 39" W
Temp.:
UTM: 0470669 5539776
Weather:

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Sp. Cond. (µS/cm)</th>
<th>TDS (g/litre)</th>
<th>Diss. Oxy (%)</th>
<th>Diss. Oxy (mg/l)</th>
<th>pH</th>
<th>Temp. (deg C)</th>
<th>Calculated Sp. Cond.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>70</td>
<td>0.061</td>
<td>76.9</td>
<td>8.28</td>
<td>8.00</td>
<td>12.03</td>
<td>91</td>
</tr>
<tr>
<td>10</td>
<td>70</td>
<td>0.061</td>
<td>76.5</td>
<td>8.24</td>
<td>8.00</td>
<td>12.02</td>
<td>91</td>
</tr>
<tr>
<td>15</td>
<td>70</td>
<td>0.061</td>
<td>76.2</td>
<td>8.21</td>
<td>7.98</td>
<td>12.00</td>
<td>91</td>
</tr>
<tr>
<td>20</td>
<td>67</td>
<td>0.062</td>
<td>75.9</td>
<td>8.57</td>
<td>7.92</td>
<td>9.17</td>
<td>95</td>
</tr>
<tr>
<td>25</td>
<td>65</td>
<td>0.062</td>
<td>73.6</td>
<td>8.67</td>
<td>7.76</td>
<td>8.18</td>
<td>97</td>
</tr>
<tr>
<td>30</td>
<td>64</td>
<td>0.064</td>
<td>70.4</td>
<td>8.65</td>
<td>7.71</td>
<td>6.40</td>
<td>98</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Slocan Lake Stewardship Society-Water Sampling Data Sheet

Site | #4 Off Shannon Creek
Date: | 25-Oct-11
Samplers: | Conklin, Hastings
Elev. |
Lat: | 50° 04' 20" N
Long: | 117° 27' 22" W
Weather: |
Temp: |
UTM: |

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Sp. Cond. (µS/cm)</th>
<th>TDS (g/litre)</th>
<th>Diss. Oxy (%)</th>
<th>Diss. Oxy (mg/l)</th>
<th>pH</th>
<th>Temp. (deg C)</th>
<th>Calculated Sp. Cond. (SC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>71</td>
<td>0.062</td>
<td>79.9</td>
<td>8.67</td>
<td>7.97</td>
<td>11.64</td>
<td>90</td>
</tr>
<tr>
<td>10</td>
<td>71</td>
<td>0.062</td>
<td>79.4</td>
<td>8.62</td>
<td>7.99</td>
<td>11.63</td>
<td>90</td>
</tr>
<tr>
<td>15</td>
<td>71</td>
<td>0.062</td>
<td>79.1</td>
<td>8.59</td>
<td>7.97</td>
<td>11.62</td>
<td>90</td>
</tr>
<tr>
<td>20</td>
<td>71</td>
<td>0.062</td>
<td>78.8</td>
<td>8.58</td>
<td>7.97</td>
<td>11.62</td>
<td>90</td>
</tr>
<tr>
<td>25</td>
<td>68</td>
<td>0.062</td>
<td>78.4</td>
<td>8.84</td>
<td>7.89</td>
<td>9.91</td>
<td>94</td>
</tr>
<tr>
<td>30</td>
<td>65</td>
<td>0.062</td>
<td>76.3</td>
<td>8.97</td>
<td>7.82</td>
<td>8.20</td>
<td>97</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Slocan Lake Stewardship Society-Water Sampling Data Sheet

<table>
<thead>
<tr>
<th>Site</th>
<th>#1 Downstream of Evans Ck., facing Cape Horn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>05-May-12</td>
</tr>
<tr>
<td>Time</td>
<td></td>
</tr>
<tr>
<td>Sampleers</td>
<td>Richard, Wayne, Jason, Anita</td>
</tr>
<tr>
<td>Elev.</td>
<td></td>
</tr>
<tr>
<td>Temp.</td>
<td></td>
</tr>
<tr>
<td>Lat.</td>
<td>49° 48' 51" N</td>
</tr>
<tr>
<td>Weather</td>
<td></td>
</tr>
<tr>
<td>Long.</td>
<td>117° 28' 26" W</td>
</tr>
<tr>
<td>UTM</td>
<td>0465876 5518092</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depth (meters)</th>
<th>Sp. Cond. (µS/cm)</th>
<th>TDS (g/litre)</th>
<th>Diss. Oxy (%)</th>
<th>Diss. Oxy (mg/l)</th>
<th>pH</th>
<th>Temp. (deg C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.40</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.21</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.17</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.14</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.13</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.10</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.09</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.07</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.07</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.07</td>
</tr>
<tr>
<td>Surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.45</td>
</tr>
</tbody>
</table>

Slocan Lake Stewardship Society-Water Sampling Data Sheet

Site: #2 Off of Enterprise Creek
Date: 05-May-12
Time:
Samplers: Richard, Wayne, Jason, Anita
Elev.
Temp.:
Lat.: 49° 51' 46" N
Weather:
Long.: 117° 26' 17" W
UTM: 0486494 5523483

<table>
<thead>
<tr>
<th>Depth (meters)</th>
<th>Sp. Cond. (µS/cm)</th>
<th>TDS (g/litre)</th>
<th>Diss. Oxy (%)</th>
<th>Diss. Oxy (mg/l)</th>
<th>pH</th>
<th>Temp. (deg C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td>7.14</td>
<td>9.89</td>
<td>5.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>7.17</td>
<td>9.18</td>
<td>5.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>7.20</td>
<td>8.82</td>
<td>4.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>7.20</td>
<td>8.49</td>
<td>4.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>7.23</td>
<td>8.25</td>
<td>4.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>7.25</td>
<td>7.98</td>
<td>4.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>7.27</td>
<td>7.81</td>
<td>4.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>7.30</td>
<td>7.61</td>
<td>4.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td>7.33</td>
<td>7.53</td>
<td>3.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>7.37</td>
<td>7.46</td>
<td>3.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface Temp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.26</td>
</tr>
</tbody>
</table>
Slocan Lake Stewardship Society-Water Sampling Data Sheet

<table>
<thead>
<tr>
<th>Site</th>
<th>#3 Off Wee Sandy Creek</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>05-May-12</td>
</tr>
<tr>
<td>Time</td>
<td></td>
</tr>
<tr>
<td>Samplers</td>
<td>Richard, Wayne, Jason, Anita</td>
</tr>
</tbody>
</table>

Lat:	50° 00' 35" N
Long:	117° 24' 39" W
Elev.	
Temp:	
Weather:	
UTM:	0470669 5539776

<table>
<thead>
<tr>
<th>Depth (meters)</th>
<th>Sp. Cond. (μS/cm)</th>
<th>TDS (g/litre)</th>
<th>Diss. Oxy (%)</th>
<th>Diss. Oxy (mg/l)</th>
<th>pH</th>
<th>Temp. (deg C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.81</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.70</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.40</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.83</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.72</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.52</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.84</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.54</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.33</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.28</td>
<td></td>
</tr>
<tr>
<td>Surface temp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.09</td>
<td></td>
</tr>
<tr>
<td>Depth (meters)</td>
<td>Sp. Cond. (μS/cm)</td>
<td>TDS (g/litre)</td>
<td>Diss. Oxy (%)</td>
<td>Diss. Oxy (mg/l)</td>
<td>pH</td>
<td>Temp (deg C)</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------</td>
<td>--------------</td>
<td>---------------</td>
<td>----------------</td>
<td>----</td>
<td>-------------</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.04</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.88</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.58</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.43</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.56</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.98</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.70</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.45</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.42</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.31</td>
</tr>
<tr>
<td>Surface temp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.47</td>
</tr>
</tbody>
</table>
Slocan Lake Stewardship Society-Water Sampling Data Sheet

Site: #1 Downstream of Evans Ck., facing Cape Horn
Date: 24-Jun-12
Samplers: Chris, Jason, Anita, Meadow
Elev.
Lat: 49° 48' 51" N
Long: 117° 28' 26" W
Temp:
Weather:
UTM: 0465876 5518092

<table>
<thead>
<tr>
<th>Depth (meters)</th>
<th>Sp. Cond. (µS/cm)</th>
<th>TDS (g/litre)</th>
<th>Diss. Oxy (%)</th>
<th>Diss. Oxy (mg/l)</th>
<th>pH</th>
<th>Temp (deg C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>64</td>
<td>0.057</td>
<td>109.6</td>
<td>12.11</td>
<td>7.82</td>
<td>11.01</td>
</tr>
<tr>
<td>10</td>
<td>61</td>
<td>0.057</td>
<td>108.3</td>
<td>12.5</td>
<td>7.79</td>
<td>8.92</td>
</tr>
<tr>
<td>15</td>
<td>62</td>
<td>0.059</td>
<td>106.4</td>
<td>12.46</td>
<td>7.79</td>
<td>8.36</td>
</tr>
<tr>
<td>20</td>
<td>61</td>
<td>0.059</td>
<td>104.6</td>
<td>12.4</td>
<td>7.75</td>
<td>7.87</td>
</tr>
<tr>
<td>25</td>
<td>61</td>
<td>0.06</td>
<td>103.8</td>
<td>12.45</td>
<td>7.73</td>
<td>7.36</td>
</tr>
<tr>
<td>30</td>
<td>61</td>
<td>0.061</td>
<td>102.3</td>
<td>12.45</td>
<td>7.7</td>
<td>6.8</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface</td>
<td>0.064</td>
<td>0.055</td>
<td>107.7</td>
<td>11.52</td>
<td>8.1</td>
<td>12.14</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 Used Rental unit with only 30 m cable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Slocan Lake Stewardship Society-Water Sampling Data Sheet

<table>
<thead>
<tr>
<th>Site</th>
<th>#2 Off of Enterprise Creek</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>24-Jun-12</td>
</tr>
<tr>
<td>Time</td>
<td></td>
</tr>
<tr>
<td>Samplers</td>
<td>Chris, Jason, Anita, Meadow</td>
</tr>
<tr>
<td>Elev.</td>
<td></td>
</tr>
<tr>
<td>Temp.</td>
<td></td>
</tr>
<tr>
<td>Lat.</td>
<td>49° 51' 46" N</td>
</tr>
<tr>
<td>Weather</td>
<td></td>
</tr>
<tr>
<td>Long.</td>
<td>117° 26' 17" W</td>
</tr>
<tr>
<td>UTM</td>
<td>0486494 5523483</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depth (meters)</th>
<th>Sp. Cond. (µS/cm)</th>
<th>TDS (g/litre)</th>
<th>Diss. Oxy (%)</th>
<th>Diss. Oxy (mg/l)</th>
<th>pH</th>
<th>Temp. (deg C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>63</td>
<td>0.055</td>
<td>110.3</td>
<td>12.11</td>
<td>7.82</td>
<td>10.86</td>
</tr>
<tr>
<td>10</td>
<td>63</td>
<td>0.058</td>
<td>107.8</td>
<td>12.42</td>
<td>7.73</td>
<td>9.15</td>
</tr>
<tr>
<td>15</td>
<td>58</td>
<td>0.059</td>
<td>107.1</td>
<td>12.49</td>
<td>7.73</td>
<td>8.65</td>
</tr>
<tr>
<td>20</td>
<td>61</td>
<td>0.059</td>
<td>105.3</td>
<td>12.47</td>
<td>7.7</td>
<td>7.92</td>
</tr>
<tr>
<td>25</td>
<td>63</td>
<td>0.062</td>
<td>103.4</td>
<td>12.56</td>
<td>7.67</td>
<td>6.93</td>
</tr>
<tr>
<td>30</td>
<td>62</td>
<td>0.064</td>
<td>101.5</td>
<td>12.6</td>
<td>7.66</td>
<td>6.01</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface</td>
<td>0.074</td>
<td>0.058</td>
<td>108.4</td>
<td>10.8</td>
<td>7.88</td>
<td>15.7</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>meters</td>
<td>µS/cm</td>
<td>g/litre</td>
<td>%</td>
<td>mg/l</td>
<td></td>
<td>deg C</td>
</tr>
<tr>
<td>5</td>
<td>68</td>
<td>0.061</td>
<td>107.8</td>
<td>11.93</td>
<td>8.08</td>
<td>10.9</td>
</tr>
<tr>
<td>10</td>
<td>67</td>
<td>0.061</td>
<td>106.7</td>
<td>12.11</td>
<td>8</td>
<td>9.81</td>
</tr>
<tr>
<td>15</td>
<td>66</td>
<td>0.062</td>
<td>105.6</td>
<td>12.22</td>
<td>7.96</td>
<td>8.99</td>
</tr>
<tr>
<td>20</td>
<td>68</td>
<td>0.065</td>
<td>104.6</td>
<td>12.26</td>
<td>7.92</td>
<td>8.43</td>
</tr>
<tr>
<td>25</td>
<td>64</td>
<td>0.063</td>
<td>103.5</td>
<td>12.46</td>
<td>7.91</td>
<td>7.3</td>
</tr>
<tr>
<td>30</td>
<td>65</td>
<td>0.066</td>
<td>101.8</td>
<td>12.68</td>
<td>7.89</td>
<td>6.04</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface</td>
<td>0.078</td>
<td>0.064</td>
<td>107.1</td>
<td>10.98</td>
<td>8.06</td>
<td>14.28</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Slocan Lake Stewardship Society-Water Sampling Data Sheet

Site: #4 Off Shannon Creek
Date: 24-Jun-12
Time:
Samplers: Chris, Jason, Anita, Meadow
Elev:
Lat: 50° 04' 20" N
Long: 117° 27' 22" W
Temp:
Weather:
UTM:

<table>
<thead>
<tr>
<th>Depth (meters)</th>
<th>Sp. Cond. (µS/cm)</th>
<th>TDS (g/litre)</th>
<th>Diss. Oxy (%)</th>
<th>Diss. Oxy (mg/l)</th>
<th>pH</th>
<th>Temp. (deg C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>87</td>
<td>0.075</td>
<td>105.7</td>
<td>11.35</td>
<td>7.88</td>
<td>12.12</td>
</tr>
<tr>
<td>10</td>
<td>71</td>
<td>0.065</td>
<td>106.5</td>
<td>12.08</td>
<td>7.86</td>
<td>9.83</td>
</tr>
<tr>
<td>15</td>
<td>68</td>
<td>0.064</td>
<td>105.3</td>
<td>12.19</td>
<td>7.84</td>
<td>8.92</td>
</tr>
<tr>
<td>20</td>
<td>67</td>
<td>0.064</td>
<td>104.9</td>
<td>12.34</td>
<td>7.8</td>
<td>8.25</td>
</tr>
<tr>
<td>25</td>
<td>67</td>
<td>0.065</td>
<td>104.8</td>
<td>12.43</td>
<td>7.79</td>
<td>7.94</td>
</tr>
<tr>
<td>30</td>
<td>69</td>
<td>0.069</td>
<td>105.1</td>
<td>12.8</td>
<td>7.7</td>
<td>6.8</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface</td>
<td>0.086</td>
<td>0.069</td>
<td>105.9</td>
<td>10.68</td>
<td>7.97</td>
<td>15.06</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Slocan Lake Stewardship Society-Water Sampling Data Sheet

Site: #1 Downstream of Evans Ck., facing Cape Horn
Date: 29-Jul-12
Samplers: Jason, Anita, Chloe
Elev.
Lat: 49° 48' 51" N
Long: 117° 28' 26" W
Temp.
UTM: 0465876 5518092
Weather:

<table>
<thead>
<tr>
<th>Depth (meters)</th>
<th>Sp. Cond. (μS/cm)</th>
<th>TDS (g/litre)</th>
<th>Diss. Oxy (%)</th>
<th>Diss. Oxy (mg/l)</th>
<th>pH</th>
<th>Temp. (deg C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>96</td>
<td>0.048</td>
<td>86.8</td>
<td>8.05</td>
<td>13.15</td>
<td>15.67</td>
</tr>
<tr>
<td>10</td>
<td>96</td>
<td>0.049</td>
<td>85.2</td>
<td>8.45</td>
<td>12.64</td>
<td>12.89</td>
</tr>
<tr>
<td>15</td>
<td>106</td>
<td>0.053</td>
<td>82.1</td>
<td>8.94</td>
<td>12.22</td>
<td>8.85</td>
</tr>
<tr>
<td>20</td>
<td>108</td>
<td>0.054</td>
<td>77.8</td>
<td>8.8</td>
<td>11.47</td>
<td>7.98</td>
</tr>
<tr>
<td>25</td>
<td>126</td>
<td>0.063</td>
<td>77.3</td>
<td>8.79</td>
<td>11.23</td>
<td>7.08</td>
</tr>
<tr>
<td>30</td>
<td>130</td>
<td>0.065</td>
<td>74.8</td>
<td>8.87</td>
<td>11.36</td>
<td>5.69</td>
</tr>
<tr>
<td>35</td>
<td>133</td>
<td>0.067</td>
<td>73.8</td>
<td>8.82</td>
<td>11.45</td>
<td>5.2</td>
</tr>
<tr>
<td>40</td>
<td>134</td>
<td>0.067</td>
<td>72.3</td>
<td>8.74</td>
<td>11.48</td>
<td>4.68</td>
</tr>
<tr>
<td>45</td>
<td>136</td>
<td>0.067</td>
<td>71.2</td>
<td>8.73</td>
<td>11.59</td>
<td>4.48</td>
</tr>
<tr>
<td>50</td>
<td>133</td>
<td>0.067</td>
<td>71.7</td>
<td>8.76</td>
<td>11.52</td>
<td>4.32</td>
</tr>
<tr>
<td>Surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18.75</td>
</tr>
</tbody>
</table>

60: above failed
<table>
<thead>
<tr>
<th>Depth (meters)</th>
<th>Sp. Cond. (µS/cm)</th>
<th>TDS (g/litre)</th>
<th>Diss. Oxy (%)</th>
<th>Diss. Oxy (mg/l)</th>
<th>pH</th>
<th>Temp. (deg C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>93</td>
<td>0.046</td>
<td>82</td>
<td>7.63</td>
<td>7.62</td>
<td>15.92</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>123</td>
<td>0.062</td>
<td>85.2</td>
<td>8</td>
<td>13.73</td>
<td>15.87</td>
</tr>
<tr>
<td>20</td>
<td>112</td>
<td>0.056</td>
<td>81.4</td>
<td>8 failed</td>
<td></td>
<td>13.52</td>
</tr>
<tr>
<td>25</td>
<td>118</td>
<td>0.059</td>
<td>75.7</td>
<td>8</td>
<td></td>
<td>9.69</td>
</tr>
<tr>
<td>30</td>
<td>126</td>
<td>0.063</td>
<td>70.4</td>
<td>7.92</td>
<td>7.66</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>132</td>
<td>0.066</td>
<td>70.6</td>
<td>8.3</td>
<td></td>
<td>6.69</td>
</tr>
<tr>
<td>40</td>
<td>134</td>
<td>0.068</td>
<td>70.5</td>
<td>8.35</td>
<td></td>
<td>5.62</td>
</tr>
<tr>
<td>45</td>
<td>139</td>
<td>0.07</td>
<td>71</td>
<td>8.52</td>
<td></td>
<td>5.17</td>
</tr>
<tr>
<td>50</td>
<td>141</td>
<td>0.07</td>
<td>70</td>
<td>8.3</td>
<td></td>
<td>4.55</td>
</tr>
<tr>
<td>55</td>
<td>142</td>
<td>0.071</td>
<td>69.7</td>
<td>8.41</td>
<td></td>
<td>4.26</td>
</tr>
<tr>
<td>60</td>
<td>138</td>
<td>0.069</td>
<td>70.6</td>
<td>8.66</td>
<td></td>
<td>4.17</td>
</tr>
<tr>
<td>Surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.51</td>
<td>19.87</td>
</tr>
</tbody>
</table>
Slocan Lake Stewardship Society-Water Sampling Data Sheet

Site: #3 Off Wee Sandy Creek
Date: 29-Jul-12
Time:
Samplers: Jason, Anita, Chloe

Elev.
Temp:
Lat: 50° 00' 35" N
Weather:
Long: 117° 24' 39" W
UTM: 0470669 5539776

<table>
<thead>
<tr>
<th>Depth meters</th>
<th>Sp. Cond. µS/cm</th>
<th>TDS g/litre</th>
<th>Diss. Oxy %</th>
<th>Diss. Oxy mg/l</th>
<th>pH</th>
<th>Temp. deg C</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>172</td>
<td>0.088</td>
<td>100.5</td>
<td>9.57</td>
<td></td>
<td>14.33</td>
</tr>
<tr>
<td>10</td>
<td>179</td>
<td>0.09</td>
<td>97.5</td>
<td>9.84</td>
<td></td>
<td>12.38</td>
</tr>
<tr>
<td>15</td>
<td>185</td>
<td>0.092</td>
<td>99.6</td>
<td>10.23</td>
<td></td>
<td>11.11</td>
</tr>
<tr>
<td>20</td>
<td>190</td>
<td>0.095</td>
<td>95.4</td>
<td>10.07</td>
<td></td>
<td>9.37</td>
</tr>
<tr>
<td>25</td>
<td>198</td>
<td>0.099</td>
<td>92.9</td>
<td>10.46</td>
<td></td>
<td>7.5</td>
</tr>
<tr>
<td>30</td>
<td>205</td>
<td>0.102</td>
<td>91</td>
<td>10.56</td>
<td></td>
<td>6.26</td>
</tr>
<tr>
<td>35</td>
<td>207</td>
<td>0.103</td>
<td>89</td>
<td>10.58</td>
<td></td>
<td>5.46</td>
</tr>
<tr>
<td>40</td>
<td>175</td>
<td>0.083</td>
<td>90</td>
<td>10.9</td>
<td></td>
<td>4.51</td>
</tr>
<tr>
<td>45</td>
<td>165</td>
<td>0.082</td>
<td>86.4</td>
<td>10.44</td>
<td></td>
<td>4.38</td>
</tr>
<tr>
<td>50</td>
<td>163</td>
<td>0.081</td>
<td>85.6</td>
<td>10.37</td>
<td></td>
<td>4.33</td>
</tr>
<tr>
<td>Surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17.84</td>
</tr>
</tbody>
</table>
Slocan Lake Stewardship Society-Water Sampling Data Sheet

Site | #4 Off Shannon Creek
Date: | 29-Jul-12
Samplers: | Jason, Anita, Chloe
Elev.: |
Lat.: | 50° 04' 20" N
Long.: | 117° 27' 22" W
Sp. Cond.: |
TDS: |
Diss. Oxy: |
Diss. Oxy: |
pH: |
Temp.: |

<table>
<thead>
<tr>
<th>Depth (meters)</th>
<th>Sp. Cond. (µS/cm)</th>
<th>TDS (g/litre)</th>
<th>Diss. Oxy (%)</th>
<th>Diss. Oxy (mg/l)</th>
<th>pH</th>
<th>Temp. (deg C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>147</td>
<td>0.073</td>
<td>99</td>
<td>9.5</td>
<td>13.41</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>140</td>
<td>0.07</td>
<td>98.5</td>
<td>9.71</td>
<td>12.61</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>142</td>
<td>0.072</td>
<td>96.7</td>
<td>9.8</td>
<td>11.27</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>146</td>
<td>0.073</td>
<td>96.4</td>
<td>10.36</td>
<td>9.06</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>142</td>
<td>0.071</td>
<td>91.4</td>
<td>10.26</td>
<td>7.46</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>147</td>
<td>0.073</td>
<td>90.3</td>
<td>10.62</td>
<td>5.31</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>149</td>
<td>0.074</td>
<td>88.7</td>
<td>10.65</td>
<td>4.69</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>142</td>
<td>0.071</td>
<td>86.2</td>
<td>10.47</td>
<td>4.56</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>143</td>
<td>0.071</td>
<td>86.8</td>
<td>10.35</td>
<td>4.48</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>144</td>
<td>0.072</td>
<td>86</td>
<td>10.3</td>
<td>4.37</td>
<td></td>
</tr>
<tr>
<td>Surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17.54</td>
</tr>
<tr>
<td>Depth meters</td>
<td>Sp. Cond. μS/cm</td>
<td>TDS g/litre</td>
<td>Diss. Oxy %</td>
<td>Diss. Oxy mg/l</td>
<td>pH</td>
<td>Temp. deg C</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>----------------</td>
<td>----</td>
<td>------------</td>
</tr>
<tr>
<td>5</td>
<td>131</td>
<td>0.101</td>
<td>102.6</td>
<td>9.94</td>
<td>8.05</td>
<td>16.86</td>
</tr>
<tr>
<td>10</td>
<td>130</td>
<td>0.101</td>
<td>102.5</td>
<td>10.04</td>
<td>8.03</td>
<td>16.34</td>
</tr>
<tr>
<td>15</td>
<td>123</td>
<td>0.105</td>
<td>105.2</td>
<td>11.31</td>
<td>7.87</td>
<td>12.11</td>
</tr>
<tr>
<td>20</td>
<td>117</td>
<td>0.105</td>
<td>101.6</td>
<td>11.39</td>
<td>7.72</td>
<td>10.26</td>
</tr>
<tr>
<td>25</td>
<td>114</td>
<td>0.11</td>
<td>98.4</td>
<td>11.62</td>
<td>7.63</td>
<td>8.05</td>
</tr>
<tr>
<td>30</td>
<td>112</td>
<td>0.112</td>
<td>96.5</td>
<td>11.78</td>
<td>7.6</td>
<td>6.74</td>
</tr>
<tr>
<td>35</td>
<td>110</td>
<td>0.114</td>
<td>94</td>
<td>11.85</td>
<td>7.57</td>
<td>5.47</td>
</tr>
<tr>
<td>40</td>
<td>108</td>
<td>0.115</td>
<td>92.3</td>
<td>11.9</td>
<td>7.55</td>
<td>4.67</td>
</tr>
<tr>
<td>45</td>
<td>107</td>
<td>0.115</td>
<td>91.8</td>
<td>11.92</td>
<td>7.54</td>
<td>4.32</td>
</tr>
<tr>
<td>50</td>
<td>106</td>
<td>0.115</td>
<td>91.5</td>
<td>11.94</td>
<td>7.54</td>
<td>4.16</td>
</tr>
<tr>
<td>55</td>
<td>106</td>
<td>0.114</td>
<td>90.9</td>
<td>11.93</td>
<td>7.54</td>
<td>4.03</td>
</tr>
<tr>
<td>60</td>
<td>105</td>
<td>0.114</td>
<td>90.6</td>
<td>11.89</td>
<td>7.54</td>
<td>3.95</td>
</tr>
<tr>
<td>surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Slocan Lake Stewardship Society-Water Sampling Data Sheet

Site: #1 Downstream of Evans Ck., facing Cape Horn
Date: 02-Sep-12 Time:
Samplers: Jason, Anita, Harvest

Elev. Temp:
Lat: 49° 48' 51" N Weather:
Long: 117° 28' 26" W UTM: 0465876 5518092
<table>
<thead>
<tr>
<th>Depth (meters)</th>
<th>Sp. Cond. (µS/cm)</th>
<th>TDS (g/litre)</th>
<th>Diss. Oxy (%)</th>
<th>Diss. Oxy (mg/l)</th>
<th>pH</th>
<th>Temp. (deg C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>135</td>
<td>0.104</td>
<td>106.1</td>
<td>10.23</td>
<td>8.09</td>
<td>16.82</td>
</tr>
<tr>
<td>10</td>
<td>132</td>
<td>0.104</td>
<td>106.6</td>
<td>10.63</td>
<td>8.03</td>
<td>15.48</td>
</tr>
<tr>
<td>15</td>
<td>126</td>
<td>0.105</td>
<td>105.6</td>
<td>10.98</td>
<td>7.86</td>
<td>13.58</td>
</tr>
<tr>
<td>20</td>
<td>121</td>
<td>0.107</td>
<td>103.4</td>
<td>11.39</td>
<td>7.67</td>
<td>10.97</td>
</tr>
<tr>
<td>25</td>
<td>115</td>
<td>0.111</td>
<td>98.8</td>
<td>11.72</td>
<td>7.5</td>
<td>7.99</td>
</tr>
<tr>
<td>30</td>
<td>112</td>
<td>0.113</td>
<td>96.1</td>
<td>11.86</td>
<td>7.45</td>
<td>6.33</td>
</tr>
<tr>
<td>35</td>
<td>110</td>
<td>0.115</td>
<td>94.3</td>
<td>12</td>
<td>7.42</td>
<td>5.06</td>
</tr>
<tr>
<td>40</td>
<td>107</td>
<td>0.114</td>
<td>92.2</td>
<td>11.9</td>
<td>7.45</td>
<td>4.59</td>
</tr>
<tr>
<td>45</td>
<td>106</td>
<td>0.114</td>
<td>92.1</td>
<td>11.95</td>
<td>7.45</td>
<td>4.34</td>
</tr>
<tr>
<td>50</td>
<td>106</td>
<td>0.114</td>
<td>91.6</td>
<td>11.95</td>
<td>7.47</td>
<td>4.14</td>
</tr>
<tr>
<td>55</td>
<td>105</td>
<td>0.114</td>
<td>91.3</td>
<td>11.95</td>
<td>7.46</td>
<td>4.03</td>
</tr>
<tr>
<td>60</td>
<td>106</td>
<td>0.114</td>
<td>91</td>
<td>11.94</td>
<td>7.44</td>
<td>3.95</td>
</tr>
<tr>
<td>Surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.04</td>
<td>17.89</td>
</tr>
</tbody>
</table>
Slocan Lake Stewardship Society-Water Sampling Data Sheet

<table>
<thead>
<tr>
<th>Site</th>
<th>Off Wee Sandy Creek</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>03-Sep-12</td>
</tr>
<tr>
<td>Time</td>
<td></td>
</tr>
<tr>
<td>Samplers</td>
<td>Wayne, Jason, Harvest</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elev.</th>
<th>Temp:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lat:</th>
<th>Weather:</th>
</tr>
</thead>
<tbody>
<tr>
<td>50° 00' 35" N</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Long:</th>
<th>UTM:</th>
</tr>
</thead>
<tbody>
<tr>
<td>117° 24' 39" W</td>
<td>0470669 5539776</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depth (meters)</th>
<th>Sp. Cond. (µS/cm)</th>
<th>TDS (g/litre)</th>
<th>Diss. Oxy (%)</th>
<th>Diss. Oxy (mg/l)</th>
<th>pH</th>
<th>Temp. (deg C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>131</td>
<td>0.103</td>
<td>102.1</td>
<td>10.03</td>
<td>8.07</td>
<td>16.18</td>
</tr>
<tr>
<td>10</td>
<td>132</td>
<td>0.103</td>
<td>102.8</td>
<td>10.06</td>
<td>8.07</td>
<td>16.15</td>
</tr>
<tr>
<td>15</td>
<td>121</td>
<td>0.106</td>
<td>102.1</td>
<td>11.12</td>
<td>7.84</td>
<td>11.51</td>
</tr>
<tr>
<td>20</td>
<td>116</td>
<td>0.107</td>
<td>98.6</td>
<td>11.32</td>
<td>7.71</td>
<td>9.27</td>
</tr>
<tr>
<td>25</td>
<td>113</td>
<td>0.109</td>
<td>96.3</td>
<td>11.44</td>
<td>7.64</td>
<td>7.84</td>
</tr>
<tr>
<td>30</td>
<td>110</td>
<td>0.112</td>
<td>94.1</td>
<td>11.7</td>
<td>7.6</td>
<td>6.08</td>
</tr>
<tr>
<td>35</td>
<td>108</td>
<td>0.115</td>
<td>92.3</td>
<td>11.85</td>
<td>7.58</td>
<td>4.78</td>
</tr>
<tr>
<td>40</td>
<td>107</td>
<td>0.115</td>
<td>91.4</td>
<td>11.84</td>
<td>7.58</td>
<td>4.45</td>
</tr>
<tr>
<td>45</td>
<td>107</td>
<td>0.115</td>
<td>91.1</td>
<td>11.86</td>
<td>7.58</td>
<td>4.25</td>
</tr>
<tr>
<td>50</td>
<td>106</td>
<td>0.115</td>
<td>90.9</td>
<td>11.86</td>
<td>7.59</td>
<td>4.15</td>
</tr>
<tr>
<td>55</td>
<td>106</td>
<td>0.114</td>
<td>90.8</td>
<td>11.86</td>
<td>7.59</td>
<td>4.12</td>
</tr>
<tr>
<td>60</td>
<td>106</td>
<td>0.114</td>
<td>90.7</td>
<td>11.84</td>
<td>7.59</td>
<td>4.1</td>
</tr>
<tr>
<td>surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.07</td>
<td>16.2</td>
</tr>
<tr>
<td>Depth (meters)</td>
<td>Sp. Cond. (µS/cm)</td>
<td>TDS (g/litre)</td>
<td>Diss. Oxy (%)</td>
<td>Diss. Oxy (mg/l)</td>
<td>pH</td>
<td>Temp. (deg C)</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----</td>
<td>--------------</td>
</tr>
<tr>
<td>5</td>
<td>132</td>
<td>0.105</td>
<td>101.1</td>
<td>10.06</td>
<td>8.04</td>
<td>15.58</td>
</tr>
<tr>
<td>10</td>
<td>130</td>
<td>0.105</td>
<td>102.6</td>
<td>10.37</td>
<td>8</td>
<td>14.88</td>
</tr>
<tr>
<td>15</td>
<td>128</td>
<td>0.106</td>
<td>102.9</td>
<td>10.66</td>
<td>7.94</td>
<td>13.53</td>
</tr>
<tr>
<td>20</td>
<td>122</td>
<td>0.106</td>
<td>101.2</td>
<td>10.88</td>
<td>7.8</td>
<td>11.83</td>
</tr>
<tr>
<td>25</td>
<td>116</td>
<td>0.108</td>
<td>98</td>
<td>11.26</td>
<td>7.62</td>
<td>9.21</td>
</tr>
<tr>
<td>30</td>
<td>113</td>
<td>0.111</td>
<td>95</td>
<td>11.33</td>
<td>7.51</td>
<td>7.65</td>
</tr>
<tr>
<td>35</td>
<td>111</td>
<td>0.112</td>
<td>94.3</td>
<td>11.56</td>
<td>7.49</td>
<td>6.53</td>
</tr>
<tr>
<td>40</td>
<td>110</td>
<td>0.114</td>
<td>92.1</td>
<td>11.63</td>
<td>7.44</td>
<td>5.45</td>
</tr>
<tr>
<td>45</td>
<td>109</td>
<td>0.115</td>
<td>90.8</td>
<td>11.62</td>
<td>7.4</td>
<td>4.9</td>
</tr>
<tr>
<td>50</td>
<td>107</td>
<td>0.115</td>
<td>90.8</td>
<td>11.78</td>
<td>7.39</td>
<td>4.38</td>
</tr>
<tr>
<td>55</td>
<td>106</td>
<td>0.115</td>
<td>90.6</td>
<td>11.81</td>
<td>7.4</td>
<td>4.19</td>
</tr>
<tr>
<td>60</td>
<td>106</td>
<td>0.115</td>
<td>90.7</td>
<td>11.85</td>
<td>7.42</td>
<td>4.12</td>
</tr>
<tr>
<td>surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.04</td>
<td>15.6</td>
</tr>
<tr>
<td>Depth (meters)</td>
<td>Sp. Cond. (µS/cm)</td>
<td>TDS (g/litre)</td>
<td>Diss. Oxy (%)</td>
<td>Diss. Oxy (mg/l)</td>
<td>pH</td>
<td>Temp. (deg C)</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>----</td>
<td>-------------</td>
</tr>
<tr>
<td>5</td>
<td>171</td>
<td>0.086</td>
<td>102.8</td>
<td>9.68</td>
<td>8.32</td>
<td>14.51</td>
</tr>
<tr>
<td>10</td>
<td>172</td>
<td>0.086</td>
<td>102.9</td>
<td>9.7</td>
<td>8.35</td>
<td>14.24</td>
</tr>
<tr>
<td>15</td>
<td>179</td>
<td>0.09</td>
<td>105.6</td>
<td>10.39</td>
<td>8.3</td>
<td>12.57</td>
</tr>
<tr>
<td>20</td>
<td>184</td>
<td>0.092</td>
<td>104.7</td>
<td>10.96</td>
<td>8.26</td>
<td>9.91</td>
</tr>
<tr>
<td>25</td>
<td>189</td>
<td>0.095</td>
<td>102</td>
<td>11.19</td>
<td>8.23</td>
<td>8.19</td>
</tr>
<tr>
<td>30</td>
<td>197</td>
<td>0.098</td>
<td>99.3</td>
<td>11.31</td>
<td>8.2</td>
<td>6.42</td>
</tr>
<tr>
<td>35</td>
<td>199</td>
<td>0.102</td>
<td>95.5</td>
<td>11.28</td>
<td>8.18</td>
<td>5.23</td>
</tr>
<tr>
<td>40</td>
<td>203</td>
<td>0.102</td>
<td>95.5</td>
<td>11.28</td>
<td>8.18</td>
<td>4.79</td>
</tr>
<tr>
<td>45</td>
<td>204</td>
<td>0.102</td>
<td>94.1</td>
<td>11.29</td>
<td>8.13</td>
<td>4.46</td>
</tr>
<tr>
<td>50</td>
<td>205</td>
<td>0.103</td>
<td>92.6</td>
<td>11.15</td>
<td>8.15</td>
<td>4.34</td>
</tr>
<tr>
<td>Surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.27</td>
<td>14.68</td>
</tr>
</tbody>
</table>
Slocan Lake Stewardship Society-Water Sampling Data Sheet

<table>
<thead>
<tr>
<th>Site</th>
<th>#2 Off of Enterprise Creek</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>08-Oct-12</td>
</tr>
<tr>
<td>Time</td>
<td></td>
</tr>
<tr>
<td>Samplers</td>
<td>Jason, Anita, Petra</td>
</tr>
<tr>
<td>Elev.</td>
<td></td>
</tr>
<tr>
<td>Lat.</td>
<td>49° 51' 46" N</td>
</tr>
<tr>
<td>Long.</td>
<td>117° 26' 17" W</td>
</tr>
<tr>
<td>UTM</td>
<td>0486494 5523483</td>
</tr>
<tr>
<td>Temp</td>
<td></td>
</tr>
<tr>
<td>Weather</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depth (meters)</th>
<th>Sp. Cond. (µS/cm)</th>
<th>TDS (g/litre)</th>
<th>Diss. Oxy (%)</th>
<th>Diss. Oxy (mg/l)</th>
<th>pH</th>
<th>Temp (deg C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>184</td>
<td>0.092</td>
<td>100.5</td>
<td>9.26</td>
<td>8.76</td>
<td>14.7</td>
</tr>
<tr>
<td>10</td>
<td>182</td>
<td>0.091</td>
<td>101.5</td>
<td>9.46</td>
<td>8.64</td>
<td>14.58</td>
</tr>
<tr>
<td>15</td>
<td>190</td>
<td>0.095</td>
<td>102.5</td>
<td>10.29</td>
<td>8.58</td>
<td>11.69</td>
</tr>
<tr>
<td>20</td>
<td>191</td>
<td>0.095</td>
<td>100</td>
<td>10.18</td>
<td>8.45</td>
<td>10.67</td>
</tr>
<tr>
<td>25</td>
<td>197</td>
<td>0.099</td>
<td>99.3</td>
<td>10.64</td>
<td>8.39</td>
<td>8.76</td>
</tr>
<tr>
<td>30</td>
<td>202</td>
<td>0.101</td>
<td>97.7</td>
<td>10.9</td>
<td>8.34</td>
<td>7.16</td>
</tr>
<tr>
<td>35</td>
<td>210</td>
<td>0.105</td>
<td>92.3</td>
<td>10.77</td>
<td>8.32</td>
<td>5.51</td>
</tr>
<tr>
<td>40</td>
<td>213</td>
<td>0.106</td>
<td>90.4</td>
<td>10.75</td>
<td>8.3</td>
<td>4.72</td>
</tr>
<tr>
<td>45</td>
<td>212</td>
<td>0.106</td>
<td>90.1</td>
<td>10.77</td>
<td>8.28</td>
<td>4.53</td>
</tr>
<tr>
<td>50</td>
<td>210</td>
<td>0.105</td>
<td>88.3</td>
<td>10.67</td>
<td>8.27</td>
<td>4.39</td>
</tr>
<tr>
<td>surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.77</td>
<td>14.86</td>
</tr>
</tbody>
</table>
Slocan Lake Stewardship Society-Water Sampling Data Sheet

Site: #3 Off Wee Sandy Creek
Date: 30-Sep-12
Samplers: Richard, Jason, Anita
Elev.
Lat: 50° 00' 35" N
Long: 117° 24' 39" W
UTM: 0470669 5539776
Weather:

<table>
<thead>
<tr>
<th>Depth (meters)</th>
<th>Sp. Cond. (µS/cm)</th>
<th>TDS (g/litre)</th>
<th>Diss. Oxy (%)</th>
<th>Diss. Oxy (mg/l)</th>
<th>pH</th>
<th>Temp (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>169</td>
<td>0.085</td>
<td>61</td>
<td>5.47</td>
<td>8.37</td>
<td>16.18</td>
</tr>
<tr>
<td>10</td>
<td>170</td>
<td>0.085</td>
<td>64</td>
<td>5.8</td>
<td>8.37</td>
<td>15.93</td>
</tr>
<tr>
<td>15</td>
<td>172</td>
<td>0.086</td>
<td>71.6</td>
<td>7.08</td>
<td>8.31</td>
<td>13</td>
</tr>
<tr>
<td>20</td>
<td>173</td>
<td>0.086</td>
<td>86.7</td>
<td>9.17</td>
<td>8.14</td>
<td>10.23</td>
</tr>
<tr>
<td>25</td>
<td>179</td>
<td>0.09</td>
<td>94.4</td>
<td>10.51</td>
<td>8.1</td>
<td>8.15</td>
</tr>
<tr>
<td>30</td>
<td>187</td>
<td>0.093</td>
<td>94.2</td>
<td>11.28</td>
<td>8.05</td>
<td>6.13</td>
</tr>
<tr>
<td>35</td>
<td>191</td>
<td>0.096</td>
<td>93.7</td>
<td>11.16</td>
<td>8.02</td>
<td>5.16</td>
</tr>
<tr>
<td>40</td>
<td>194</td>
<td>0.097</td>
<td>92.6</td>
<td>11.16</td>
<td>8</td>
<td>4.67</td>
</tr>
<tr>
<td>45</td>
<td>195</td>
<td>0.097</td>
<td>91.2</td>
<td>11.06</td>
<td>7.99</td>
<td>4.46</td>
</tr>
<tr>
<td>50</td>
<td>196</td>
<td>0.098</td>
<td>93</td>
<td>11.26</td>
<td>7.99</td>
<td>4.36</td>
</tr>
<tr>
<td>surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.37</td>
<td>16.37</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

May be problem with oxygen probe.
Slocan Lake Stewardship Society-Water Sampling Data Sheet

Site: #4 Off Shannon Creek
Date: 30-Sep-12
Samplers: Richard, Jason, Anita

Elev.
Lat: 50° 04' 20" N
Long: 117° 27' 22" W

Temp:
Weather:

<table>
<thead>
<tr>
<th>Depth (meters)</th>
<th>Sp.Cond. (µS/cm)</th>
<th>TDS (g/litre)</th>
<th>Diss. Oxy (%)</th>
<th>Diss. Oxy (mg/l)</th>
<th>pH</th>
<th>Temp. (deg C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>109</td>
<td>0.055</td>
<td>96.7</td>
<td>8.88</td>
<td>8.53</td>
<td>16.04</td>
</tr>
<tr>
<td>10</td>
<td>111</td>
<td>0.056</td>
<td>95.4</td>
<td>8.85</td>
<td>8.5</td>
<td>15.34</td>
</tr>
<tr>
<td>15</td>
<td>110</td>
<td>0.055</td>
<td>101.1</td>
<td>9.82</td>
<td>8.4</td>
<td>13.16</td>
</tr>
<tr>
<td>20</td>
<td>110</td>
<td>0.055</td>
<td>96.5</td>
<td>10.2</td>
<td>8.26</td>
<td>9.38</td>
</tr>
<tr>
<td>25</td>
<td>113</td>
<td>0.056</td>
<td>94</td>
<td>10.45</td>
<td>8.18</td>
<td>7.68</td>
</tr>
<tr>
<td>30</td>
<td>118</td>
<td>0.059</td>
<td>90.6</td>
<td>10.53</td>
<td>8.14</td>
<td>6.13</td>
</tr>
<tr>
<td>35</td>
<td>120</td>
<td>0.06</td>
<td>85.1</td>
<td>10.06</td>
<td>8.11</td>
<td>5.42</td>
</tr>
<tr>
<td>40</td>
<td>123</td>
<td>0.062</td>
<td>85.3</td>
<td>10.25</td>
<td>8.1</td>
<td>4.76</td>
</tr>
<tr>
<td>45</td>
<td>124</td>
<td>0.062</td>
<td>84.1</td>
<td>10.2</td>
<td>8.09</td>
<td>4.48</td>
</tr>
<tr>
<td>50</td>
<td>125</td>
<td>0.063</td>
<td>83.3</td>
<td>10.12</td>
<td>8.09</td>
<td>4.34</td>
</tr>
<tr>
<td>Surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.57</td>
<td>16.2</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>-----</td>
<td>-----------</td>
<td>-----------</td>
<td>----</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>µS/cm</td>
<td>g/litre</td>
<td>%</td>
<td>mg/l</td>
<td>deg C</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>84</td>
<td>0.042</td>
<td></td>
<td></td>
<td>7.5</td>
<td>8.81</td>
</tr>
<tr>
<td>10</td>
<td>92</td>
<td>0.046</td>
<td>66</td>
<td>7.14</td>
<td>7.12</td>
<td>8.09</td>
</tr>
<tr>
<td>15</td>
<td>96</td>
<td>0.048</td>
<td></td>
<td></td>
<td>7.09</td>
<td>7.37</td>
</tr>
<tr>
<td>20</td>
<td>98</td>
<td>0.049</td>
<td></td>
<td></td>
<td>7.34</td>
<td>7.18</td>
</tr>
<tr>
<td>25</td>
<td>99</td>
<td>0.05</td>
<td></td>
<td></td>
<td>7.47</td>
<td>6.39</td>
</tr>
<tr>
<td>30</td>
<td>98</td>
<td>0.049</td>
<td></td>
<td></td>
<td>7.57</td>
<td>6.05</td>
</tr>
<tr>
<td>35</td>
<td>100</td>
<td>0.05</td>
<td></td>
<td></td>
<td>7.57</td>
<td>6.01</td>
</tr>
<tr>
<td>40</td>
<td>102</td>
<td>0.051</td>
<td></td>
<td></td>
<td>7.57</td>
<td>5.81</td>
</tr>
<tr>
<td>45</td>
<td>103</td>
<td>0.052</td>
<td></td>
<td></td>
<td>7.57</td>
<td>5.43</td>
</tr>
<tr>
<td>50</td>
<td>105</td>
<td>0.052</td>
<td></td>
<td></td>
<td>7.56</td>
<td>5.29</td>
</tr>
<tr>
<td>surface</td>
<td>O2 probe not in calibration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: UTM: 0465876 5518092

Site: #1 Downstream of Evans Ck., facing Cape Horn
Date: 26-May-13
Elev.
Lat: 49° 48' 51" N
Long: 117° 28' 26" W
Weather:

Samplers: Jason and Anita

Temp:
Slocan Lake Stewardship Society-Water Sampling Data Sheet

Site
#2 Off of Enterprise Creek

Date
26-May-13

Time

Samplers
Jason and Anita

Elev.

Temp.

Lat.
49° 51' 46" N

Weather:

Long.
117° 26' 17" W

UTM:
0486494 5523483

Depth
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>86</td>
<td>0.043</td>
<td></td>
<td></td>
<td>7.72</td>
<td>9.13</td>
</tr>
<tr>
<td>10</td>
<td>88</td>
<td>0.044</td>
<td></td>
<td></td>
<td>7.58</td>
<td>8.8</td>
</tr>
<tr>
<td>15</td>
<td>89</td>
<td>0.045</td>
<td></td>
<td></td>
<td>7.54</td>
<td>8.72</td>
</tr>
<tr>
<td>20</td>
<td>94</td>
<td>0.047</td>
<td></td>
<td></td>
<td>7.5</td>
<td>8.3</td>
</tr>
<tr>
<td>25</td>
<td>95</td>
<td>0.047</td>
<td></td>
<td></td>
<td>7.54</td>
<td>6.1</td>
</tr>
<tr>
<td>30</td>
<td>96</td>
<td>0.048</td>
<td></td>
<td></td>
<td>7.43</td>
<td>5.99</td>
</tr>
<tr>
<td>35</td>
<td>98</td>
<td>0.049</td>
<td></td>
<td></td>
<td>7.43</td>
<td>5.54</td>
</tr>
<tr>
<td>40</td>
<td>99</td>
<td>0.049</td>
<td></td>
<td></td>
<td>7.39</td>
<td>5.23</td>
</tr>
<tr>
<td>45</td>
<td>100</td>
<td>0.05</td>
<td></td>
<td></td>
<td>7.41</td>
<td>4.88</td>
</tr>
<tr>
<td>50</td>
<td>102</td>
<td>0.051</td>
<td></td>
<td></td>
<td>7.4</td>
<td>4.63</td>
</tr>
<tr>
<td>surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
<table>
<thead>
<tr>
<th>Depth (meters)</th>
<th>Sp. Cond. (µS/cm)</th>
<th>TDS (g/litre)</th>
<th>Diss. Oxy (%)</th>
<th>Diss. Oxy (mg/l)</th>
<th>pH</th>
<th>Temp. (deg C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>87</td>
<td>0.043</td>
<td></td>
<td></td>
<td>7.63</td>
<td>9.84</td>
</tr>
<tr>
<td>10</td>
<td>89</td>
<td>0.044</td>
<td></td>
<td></td>
<td>7.6</td>
<td>8.79</td>
</tr>
<tr>
<td>15</td>
<td>88</td>
<td>0.044</td>
<td></td>
<td></td>
<td>7.57</td>
<td>8.22</td>
</tr>
<tr>
<td>20</td>
<td>90</td>
<td>0.045</td>
<td></td>
<td></td>
<td>7.53</td>
<td>7.67</td>
</tr>
<tr>
<td>25</td>
<td>93</td>
<td>0.047</td>
<td></td>
<td></td>
<td>7.51</td>
<td>6.71</td>
</tr>
<tr>
<td>30</td>
<td>96</td>
<td>0.048</td>
<td></td>
<td></td>
<td>7.49</td>
<td>6.18</td>
</tr>
<tr>
<td>35</td>
<td>98</td>
<td>0.049</td>
<td></td>
<td></td>
<td>7.45</td>
<td>5.41</td>
</tr>
<tr>
<td>40</td>
<td>100</td>
<td>0.05</td>
<td></td>
<td></td>
<td>7.44</td>
<td>4.83</td>
</tr>
<tr>
<td>45</td>
<td>101</td>
<td>0.051</td>
<td></td>
<td></td>
<td>7.38</td>
<td>4.68</td>
</tr>
<tr>
<td>50</td>
<td>104</td>
<td>0.052</td>
<td></td>
<td></td>
<td>7.39</td>
<td>4.37</td>
</tr>
<tr>
<td>Surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.97</td>
</tr>
<tr>
<td>Site</td>
<td>#4 Off Shannon Creek</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>26-May-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Samplers</td>
<td>Jason and Anita</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lat:</td>
<td>50° 04' 20" N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weather</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long:</td>
<td>117° 27' 22" W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UTM:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth meters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sp. Cond.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDS g/litre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diss. Oxy %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diss. Oxy mg/l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temp. deg C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>86</td>
<td>0.043</td>
<td>7.66</td>
<td>8.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>89</td>
<td>0.043</td>
<td>7.57</td>
<td>8.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>91</td>
<td>0.046</td>
<td>7.51</td>
<td>7.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>93</td>
<td>0.046</td>
<td>7.49</td>
<td>7.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>95</td>
<td>0.048</td>
<td>7.49</td>
<td>6.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>97</td>
<td>0.049</td>
<td>7.47</td>
<td>6.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>101</td>
<td>0.05</td>
<td>7.47</td>
<td>5.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>103</td>
<td>0.051</td>
<td>7.43</td>
<td>4.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>103</td>
<td>0.052</td>
<td>7.41</td>
<td>4.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>105</td>
<td>0.053</td>
<td>7.39</td>
<td>4.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>surface</td>
<td></td>
<td></td>
<td></td>
<td>13.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Slocan Lake Stewardship Society-Water Sampling Data Sheet

Site: #1 Downstream of Evans Ck., facing Cape Horn
Date: 22-Jul-13
Samplers: Anita, Jason
Elev.:
Lat.: 49° 48' 51" N
Long.: 117° 28' 26" W
UTM: 0465876 5518092
Temp.:
Weather:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>meters</td>
<td>µS/cm</td>
<td>mg/l</td>
<td>%</td>
<td>mg/l</td>
<td></td>
<td>deg C</td>
</tr>
<tr>
<td>5</td>
<td>67</td>
<td>0.033</td>
<td>80.9</td>
<td>7.45</td>
<td>7.49</td>
<td>16.31</td>
</tr>
<tr>
<td>10</td>
<td>72</td>
<td>0.036</td>
<td>70.2</td>
<td>7.01</td>
<td>7.11</td>
<td>12.42</td>
</tr>
<tr>
<td>15</td>
<td>71</td>
<td>0.036</td>
<td>61.9</td>
<td>7.35</td>
<td>7.21</td>
<td>10.54</td>
</tr>
<tr>
<td>20</td>
<td>77</td>
<td>0.039</td>
<td>65.3</td>
<td>7.15</td>
<td>7</td>
<td>8.5</td>
</tr>
<tr>
<td>25</td>
<td>85</td>
<td>0.043</td>
<td>65.5</td>
<td>7.52</td>
<td>7.14</td>
<td>6.99</td>
</tr>
<tr>
<td>30</td>
<td>87</td>
<td>0.043</td>
<td>60</td>
<td>7.01</td>
<td>7.2</td>
<td>5.73</td>
</tr>
<tr>
<td>35</td>
<td>88</td>
<td>0.044</td>
<td>55.1</td>
<td>6.63</td>
<td>7.27</td>
<td>5.11</td>
</tr>
<tr>
<td>40</td>
<td>91</td>
<td>0.046</td>
<td>55.4</td>
<td>6.68</td>
<td>7.34</td>
<td>4.88</td>
</tr>
<tr>
<td>45</td>
<td>95</td>
<td>0.047</td>
<td>56.4</td>
<td>6.8</td>
<td>7.38</td>
<td>4.63</td>
</tr>
<tr>
<td>50</td>
<td>99</td>
<td>0.05</td>
<td>56.9</td>
<td>6.84</td>
<td>7.43</td>
<td>4.48</td>
</tr>
<tr>
<td>surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.62</td>
<td>22.19</td>
</tr>
</tbody>
</table>
Slocan Lake Stewardship Society-Water Sampling Data Sheet

Site
- #2 Off of Enterprise Creek

Date
- 22-Jul-13

Samplers
- Anita, Jason

Elev.

Temp.

Lat.
- 49° 51' 46" N

Weather:

Long.
- 117° 26' 17" W

UTM:
- 0486494 5523483

<table>
<thead>
<tr>
<th>Depth (meters)</th>
<th>Sp. Cond. (μS/cm)</th>
<th>TDS (g/litre)</th>
<th>Diss. Oxy (%)</th>
<th>Diss. Oxy (mg/l)</th>
<th>pH</th>
<th>Temp. (deg C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>96</td>
<td>0.034</td>
<td>80.8</td>
<td>7.38</td>
<td>7.45</td>
<td>15.78</td>
</tr>
<tr>
<td>10</td>
<td>98</td>
<td>0.033</td>
<td>74.6</td>
<td>7.4</td>
<td>7.36</td>
<td>12.74</td>
</tr>
<tr>
<td>15</td>
<td>96</td>
<td>0.033</td>
<td>75.8</td>
<td>7.82</td>
<td>7.28</td>
<td>10.94</td>
</tr>
<tr>
<td>20</td>
<td>99</td>
<td>0.034</td>
<td>73.6</td>
<td>7.9</td>
<td>7.26</td>
<td>9.44</td>
</tr>
<tr>
<td>25</td>
<td>103</td>
<td>0.038</td>
<td>72.2</td>
<td>7.93</td>
<td>7.26</td>
<td>8.26</td>
</tr>
<tr>
<td>30</td>
<td>108</td>
<td>0.044</td>
<td>73</td>
<td>8.43</td>
<td>7.23</td>
<td>6.54</td>
</tr>
<tr>
<td>35</td>
<td>110</td>
<td>0.047</td>
<td>73</td>
<td>8.62</td>
<td>7.21</td>
<td>5.61</td>
</tr>
<tr>
<td>40</td>
<td>112</td>
<td>0.047</td>
<td>70</td>
<td>8.39</td>
<td>7.21</td>
<td>5.22</td>
</tr>
<tr>
<td>45</td>
<td>113</td>
<td>0.052</td>
<td>70.4</td>
<td>8.5</td>
<td>7.23</td>
<td>4.94</td>
</tr>
<tr>
<td>50</td>
<td>115</td>
<td>0.054</td>
<td>70.1</td>
<td>8.49</td>
<td>7.24</td>
<td>4.58</td>
</tr>
<tr>
<td>surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.57</td>
<td>22.21</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth (meters)</td>
<td>Sp. Cond. (µS/cm)</td>
<td>TDS (g/litre)</td>
<td>Diss. Oxy (%)</td>
<td>Diss. Oxy (mg/l)</td>
<td>PH</td>
<td>Temp (°C)</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>-----</td>
<td>-----------</td>
</tr>
<tr>
<td>5</td>
<td>38</td>
<td>0.021</td>
<td>31.4</td>
<td></td>
<td>7.96</td>
<td>15.4</td>
</tr>
<tr>
<td>10</td>
<td>43</td>
<td>0.022</td>
<td>35.2</td>
<td></td>
<td>7.78</td>
<td>13.98</td>
</tr>
<tr>
<td>15</td>
<td>52</td>
<td>0.026</td>
<td>33.2</td>
<td></td>
<td>7.76</td>
<td>11.97</td>
</tr>
<tr>
<td>20</td>
<td>59</td>
<td>0.03</td>
<td>33.9</td>
<td></td>
<td>7.69</td>
<td>9.7</td>
</tr>
<tr>
<td>25</td>
<td>55</td>
<td>0.028</td>
<td>21.2</td>
<td></td>
<td>7.68</td>
<td>7.62</td>
</tr>
<tr>
<td>30</td>
<td>56</td>
<td>0.028</td>
<td>12.3</td>
<td></td>
<td>7.59</td>
<td>6.49</td>
</tr>
<tr>
<td>35</td>
<td>59</td>
<td>0.029</td>
<td>6.9</td>
<td></td>
<td>7.58</td>
<td>5.85</td>
</tr>
<tr>
<td>40</td>
<td>58</td>
<td>0.029</td>
<td>2.4</td>
<td></td>
<td>7.52</td>
<td>5.21</td>
</tr>
<tr>
<td>45</td>
<td>58</td>
<td>0.029</td>
<td>0</td>
<td></td>
<td>7.49</td>
<td>4.9</td>
</tr>
<tr>
<td>50</td>
<td>60</td>
<td>0.03</td>
<td></td>
<td></td>
<td>7.46</td>
<td>4.72</td>
</tr>
<tr>
<td>Surface</td>
<td></td>
<td></td>
<td>dissolved Oxy obviously wrong</td>
<td>7.78</td>
<td>21.64</td>
<td></td>
</tr>
<tr>
<td>Depth (meters)</td>
<td>Sp. Cond. (µS/cm)</td>
<td>TDS (g/litre)</td>
<td>Diss. Oxy (%)</td>
<td>Diss. Oxy (mg/l)</td>
<td>pH</td>
<td>Temp. (deg C)</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------</td>
<td>--------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----</td>
<td>-------------</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.58</td>
<td>14.92</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.57</td>
<td>12.96</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.53</td>
<td>11.07</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.52</td>
<td>9.43</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.41</td>
<td>8.6</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.4</td>
<td>7.97</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.29</td>
<td>6.84</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.41</td>
<td>5.59</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.4</td>
<td>5.13</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.39</td>
<td>4.94</td>
</tr>
<tr>
<td>Surface</td>
<td>wind picked up</td>
<td></td>
<td></td>
<td></td>
<td>7.8</td>
<td>19.37</td>
</tr>
<tr>
<td>60</td>
<td>meter kept reading 0 on all other categories</td>
<td></td>
<td></td>
<td></td>
<td>7.8</td>
<td>19.37</td>
</tr>
<tr>
<td>Depth meters</td>
<td>Sp. Cond. μS/cm</td>
<td>TDS g/litre</td>
<td>Diss. Oxy %</td>
<td>Diss. Oxy mg/l</td>
<td>pH</td>
<td>Temp. deg C</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-------------</td>
<td>----------------</td>
<td>----</td>
<td>-------------</td>
</tr>
<tr>
<td>5</td>
<td>70</td>
<td>0.052</td>
<td>108.7</td>
<td>10.06</td>
<td>7.85</td>
<td>19.07</td>
</tr>
<tr>
<td>10</td>
<td>69</td>
<td>0.055</td>
<td>113.1</td>
<td>11.16</td>
<td>7.95</td>
<td>15.3</td>
</tr>
<tr>
<td>15</td>
<td>64</td>
<td>0.056</td>
<td>110</td>
<td>12.07</td>
<td>7.75</td>
<td>11.4</td>
</tr>
<tr>
<td>20</td>
<td>63</td>
<td>0.059</td>
<td>108.9</td>
<td>12.57</td>
<td>7.59</td>
<td>9.07</td>
</tr>
<tr>
<td>25</td>
<td>63</td>
<td>0.061</td>
<td>103.7</td>
<td>12.38</td>
<td>7.5</td>
<td>7.8</td>
</tr>
<tr>
<td>30</td>
<td>62</td>
<td>0.062</td>
<td>100.1</td>
<td>12.34</td>
<td>7.47</td>
<td>6.55</td>
</tr>
<tr>
<td>35</td>
<td>61</td>
<td>0.063</td>
<td>97.2</td>
<td>12.24</td>
<td>7.41</td>
<td>5.58</td>
</tr>
<tr>
<td>40</td>
<td>60</td>
<td>0.063</td>
<td>95.5</td>
<td>12.22</td>
<td>7.25</td>
<td>5.03</td>
</tr>
<tr>
<td>45</td>
<td>60</td>
<td>0.063</td>
<td>94.5</td>
<td>12.14</td>
<td>7.05</td>
<td>4.76</td>
</tr>
<tr>
<td>50</td>
<td>60</td>
<td>0.064</td>
<td>93.3</td>
<td>12.06</td>
<td>7.04</td>
<td>4.59</td>
</tr>
<tr>
<td>55</td>
<td>59</td>
<td>0.064</td>
<td>92.3</td>
<td>11.95</td>
<td>7.07</td>
<td>4.48</td>
</tr>
<tr>
<td>60</td>
<td>59</td>
<td>0.063</td>
<td>91.6</td>
<td>11.89</td>
<td>7.08</td>
<td>4.38</td>
</tr>
<tr>
<td>surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.8</td>
<td>21.61</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth meters</td>
<td>Sp. Cond. μS/cm</td>
<td>TDS g/litre</td>
<td>Diss. Oxy %</td>
<td>Diss. Oxy mg/l</td>
<td>pH</td>
<td>Temp. deg C</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>-------------</td>
<td>----------------</td>
<td>----</td>
<td>-------------</td>
</tr>
<tr>
<td>5</td>
<td>79</td>
<td>0.054</td>
<td>104.8</td>
<td>9.53</td>
<td>7.78</td>
<td>19.87</td>
</tr>
<tr>
<td>10</td>
<td>69</td>
<td>0.056</td>
<td>112.6</td>
<td>11.39</td>
<td>7.86</td>
<td>14.8</td>
</tr>
<tr>
<td>15</td>
<td>63</td>
<td>0.057</td>
<td>114</td>
<td>12.79</td>
<td>7.72</td>
<td>10.68</td>
</tr>
<tr>
<td>20</td>
<td>64</td>
<td>0.059</td>
<td>105.2</td>
<td>12.58</td>
<td>7.53</td>
<td>8.67</td>
</tr>
<tr>
<td>25</td>
<td>62</td>
<td>0.061</td>
<td>102</td>
<td>12.27</td>
<td>7.48</td>
<td>7.46</td>
</tr>
<tr>
<td>30</td>
<td>61</td>
<td>0.062</td>
<td>99.1</td>
<td>12.34</td>
<td>7.45</td>
<td>6.06</td>
</tr>
<tr>
<td>35</td>
<td>60</td>
<td>0.063</td>
<td>97</td>
<td>12.23</td>
<td>7.44</td>
<td>5.38</td>
</tr>
<tr>
<td>40</td>
<td>60</td>
<td>0.063</td>
<td>94.8</td>
<td>12.12</td>
<td>7.41</td>
<td>4.96</td>
</tr>
<tr>
<td>45</td>
<td>59</td>
<td>0.063</td>
<td>93.6</td>
<td>12.07</td>
<td>7.38</td>
<td>4.68</td>
</tr>
<tr>
<td>50</td>
<td>59</td>
<td>0.063</td>
<td>92.6</td>
<td>12</td>
<td>7.36</td>
<td>4.5</td>
</tr>
<tr>
<td>55</td>
<td>59</td>
<td>0.063</td>
<td>91.9</td>
<td>11.94</td>
<td>7.3</td>
<td>4.37</td>
</tr>
<tr>
<td>60</td>
<td>59</td>
<td>0.063</td>
<td>91.1</td>
<td>11.86</td>
<td>7.24</td>
<td>4.27</td>
</tr>
<tr>
<td>surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.77</td>
<td>21.5</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth (m)</td>
<td>Sp. Cond. μS/cm</td>
<td>TDS g/litre</td>
<td>Diss. Oxy %</td>
<td>Diss. Oxy mg/l</td>
<td>pH</td>
<td>Temp. deg C</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
<td>-------------</td>
<td>-------------</td>
<td>----------------</td>
<td>----</td>
<td>-------------</td>
</tr>
<tr>
<td>5</td>
<td>80</td>
<td>0.058</td>
<td>104.4</td>
<td>9.56</td>
<td>7.86</td>
<td>19.65</td>
</tr>
<tr>
<td>10</td>
<td>70</td>
<td>0.057</td>
<td>110.3</td>
<td>11.26</td>
<td>7.86</td>
<td>14.17</td>
</tr>
<tr>
<td>15</td>
<td>65</td>
<td>0.057</td>
<td>110.1</td>
<td>12.12</td>
<td>7.75</td>
<td>11.58</td>
</tr>
<tr>
<td>20</td>
<td>63</td>
<td>0.058</td>
<td>108.8</td>
<td>12.51</td>
<td>7.64</td>
<td>9.59</td>
</tr>
<tr>
<td>25</td>
<td>63</td>
<td>0.06</td>
<td>105.1</td>
<td>12.51</td>
<td>7.55</td>
<td>7.83</td>
</tr>
<tr>
<td>30</td>
<td>62</td>
<td>0.062</td>
<td>101.1</td>
<td>12.36</td>
<td>7.5</td>
<td>6.66</td>
</tr>
<tr>
<td>35</td>
<td>61</td>
<td>0.063</td>
<td>97.6</td>
<td>12.27</td>
<td>7.46</td>
<td>5.61</td>
</tr>
<tr>
<td>40</td>
<td>60</td>
<td>0.064</td>
<td>95.3</td>
<td>12.16</td>
<td>7.45</td>
<td>5.03</td>
</tr>
<tr>
<td>45</td>
<td>60</td>
<td>0.064</td>
<td>93.5</td>
<td>11.99</td>
<td>7.44</td>
<td>4.84</td>
</tr>
<tr>
<td>50</td>
<td>60</td>
<td>0.064</td>
<td>92.3</td>
<td>11.87</td>
<td>7.44</td>
<td>4.66</td>
</tr>
<tr>
<td>55</td>
<td>60</td>
<td>0.064</td>
<td>91.2</td>
<td>11.78</td>
<td>7.43</td>
<td>4.58</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
<td>0.064</td>
<td>90.8</td>
<td>11.75</td>
<td>7.4</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Surface: 7.88

**70
75
80
85
90
95
100**
Slocan Lake Stewardship Society-Water Sampling Data Sheet

Site: #4 Off Shannon Creek
Date: 12-Aug-13
Samplers: Jason, Anita
Elev.
Lat.: 50° 04' 20" N
Long.: 117° 27' 22" W
Temp.
Weather.
UTM.

<table>
<thead>
<tr>
<th>Depth (meters)</th>
<th>Sp. Cond. (µS/cm)</th>
<th>TDS (g/litre)</th>
<th>Diss. Oxy (%)</th>
<th>Diss. Oxy (mg/l)</th>
<th>pH</th>
<th>Temp. (deg C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>79</td>
<td>0.059</td>
<td>104.9</td>
<td>9.91</td>
<td>7.92</td>
<td>18.39</td>
</tr>
<tr>
<td>10</td>
<td>76</td>
<td>0.061</td>
<td>109.4</td>
<td>11.04</td>
<td>7.96</td>
<td>15.02</td>
</tr>
<tr>
<td>15</td>
<td>65</td>
<td>0.058</td>
<td>106</td>
<td>11.63</td>
<td>7.7</td>
<td>10.54</td>
</tr>
<tr>
<td>20</td>
<td>63</td>
<td>0.059</td>
<td>104.2</td>
<td>12.2</td>
<td>7.62</td>
<td>8.74</td>
</tr>
<tr>
<td>25</td>
<td>62</td>
<td>0.061</td>
<td>100.4</td>
<td>12.1</td>
<td>7.55</td>
<td>7.44</td>
</tr>
<tr>
<td>30</td>
<td>61</td>
<td>0.062</td>
<td>98.9</td>
<td>12.09</td>
<td>7.5</td>
<td>6.41</td>
</tr>
<tr>
<td>35</td>
<td>61</td>
<td>0.063</td>
<td>95.7</td>
<td>12.04</td>
<td>7.46</td>
<td>5.65</td>
</tr>
<tr>
<td>40</td>
<td>61</td>
<td>0.064</td>
<td>94.1</td>
<td>11.97</td>
<td>7.43</td>
<td>5.19</td>
</tr>
<tr>
<td>45</td>
<td>61</td>
<td>0.064</td>
<td>91.8</td>
<td>11.78</td>
<td>7.43</td>
<td>4.81</td>
</tr>
<tr>
<td>50</td>
<td>61</td>
<td>0.064</td>
<td>90.5</td>
<td>11.65</td>
<td>7.43</td>
<td>4.69</td>
</tr>
<tr>
<td>55</td>
<td>60</td>
<td>0.064</td>
<td>89.9</td>
<td>11.62</td>
<td>7.39</td>
<td>4.55</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
<td>0.064</td>
<td>89.6</td>
<td>11.6</td>
<td>7.37</td>
<td>4.47</td>
</tr>
<tr>
<td>surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.85</td>
<td>21.16</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Slocan Lake Stewardship Society-Water Sampling Data Sheet

<table>
<thead>
<tr>
<th>Site</th>
<th>#1 Downstream of Evans Ck., facing Cape Horn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date:</td>
<td>02-Sep-13</td>
</tr>
<tr>
<td>Time</td>
<td></td>
</tr>
<tr>
<td>Samplers:</td>
<td>Richard, Wayne, Therese, Bruce</td>
</tr>
<tr>
<td>Elev.</td>
<td></td>
</tr>
<tr>
<td>Temp:</td>
<td></td>
</tr>
<tr>
<td>Lat:</td>
<td>49° 48' 51" N</td>
</tr>
<tr>
<td>Weather:</td>
<td></td>
</tr>
<tr>
<td>Long:</td>
<td>117° 28' 26" W</td>
</tr>
<tr>
<td>UTM:</td>
<td>0465876 5518092</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depth (meters)</th>
<th>Sp. Cond. (μS/cm)</th>
<th>TDS (g/litre)</th>
<th>Diss. Oxy (%)</th>
<th>Diss. Oxy (mg/l)</th>
<th>pH</th>
<th>Temp. (deg C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>85</td>
<td>0.055</td>
<td>122.7</td>
<td>11.25</td>
<td>7.81</td>
<td>19.92</td>
</tr>
<tr>
<td>10</td>
<td>79</td>
<td>0.051</td>
<td>121.8</td>
<td>11.45</td>
<td>7.8</td>
<td>18.54</td>
</tr>
<tr>
<td>15</td>
<td>87</td>
<td>0.056</td>
<td>125.2</td>
<td>13.61</td>
<td>7.6</td>
<td>11.68</td>
</tr>
<tr>
<td>20</td>
<td>89</td>
<td>0.058</td>
<td>120.4</td>
<td>13.66</td>
<td>7.46</td>
<td>9.68</td>
</tr>
<tr>
<td>25</td>
<td>91</td>
<td>0.059</td>
<td>92.4</td>
<td>10.72</td>
<td>7.54</td>
<td>8.63</td>
</tr>
<tr>
<td>30</td>
<td>93</td>
<td>0.06</td>
<td>95.1</td>
<td>11.38</td>
<td>7.48</td>
<td>7.62</td>
</tr>
<tr>
<td>35</td>
<td>95</td>
<td>0.062</td>
<td>94.7</td>
<td>11.65</td>
<td>7.46</td>
<td>6.48</td>
</tr>
<tr>
<td>40</td>
<td>96</td>
<td>0.062</td>
<td>93.6</td>
<td>11.73</td>
<td>7.43</td>
<td>5.74</td>
</tr>
<tr>
<td>45</td>
<td>96</td>
<td>0.062</td>
<td>92.6</td>
<td>11.77</td>
<td>7.4</td>
<td>5.18</td>
</tr>
<tr>
<td>50</td>
<td>96</td>
<td>0.063</td>
<td>107</td>
<td>13.69</td>
<td>7.25</td>
<td>4.9</td>
</tr>
<tr>
<td>55</td>
<td>97</td>
<td>0.063</td>
<td>102.7</td>
<td>13.25</td>
<td>7.21</td>
<td>4.65</td>
</tr>
<tr>
<td>60</td>
<td>97</td>
<td>0.063</td>
<td>101.2</td>
<td>13.11</td>
<td>7.19</td>
<td>4.5</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Slocan Lake Stewardship Society-Water Sampling Data Sheet

<table>
<thead>
<tr>
<th>Site</th>
<th>#2 Off of Enterprise Creek</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>02-Sep-13</td>
</tr>
<tr>
<td>Time</td>
<td></td>
</tr>
<tr>
<td>Samplers</td>
<td>Richard, Wayne, Therese, Bruce</td>
</tr>
<tr>
<td>Elev.</td>
<td></td>
</tr>
<tr>
<td>Temp.</td>
<td></td>
</tr>
<tr>
<td>Lat.</td>
<td>49° 51' 46" N</td>
</tr>
<tr>
<td>Weather</td>
<td></td>
</tr>
<tr>
<td>Long.</td>
<td>117° 26' 17" W</td>
</tr>
<tr>
<td>UTM</td>
<td>0486494 5523483</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depth (meters)</th>
<th>Sp. Cond. (µS/cm)</th>
<th>TDS (g/litre)</th>
<th>Diss. Oxy (%)</th>
<th>Diss. Oxy (mg/l)</th>
<th>pH</th>
<th>Temp. (deg C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>86</td>
<td>0.056</td>
<td>113.8</td>
<td>10.52</td>
<td>7.84</td>
<td>19.19</td>
</tr>
<tr>
<td>10</td>
<td>84</td>
<td>0.054</td>
<td>126.3</td>
<td>12.16</td>
<td>7.75</td>
<td>17.12</td>
</tr>
<tr>
<td>15</td>
<td>87</td>
<td>0.056</td>
<td>127.8</td>
<td>13.65</td>
<td>7.23</td>
<td>12.42</td>
</tr>
<tr>
<td>20</td>
<td>90</td>
<td>0.058</td>
<td>92.8</td>
<td>11.16</td>
<td>7.08</td>
<td>9.74</td>
</tr>
<tr>
<td>25</td>
<td>91</td>
<td>0.059</td>
<td>98.7</td>
<td>11.46</td>
<td>7.03</td>
<td>8.84</td>
</tr>
<tr>
<td>30</td>
<td>93</td>
<td>0.061</td>
<td>97.8</td>
<td>11.69</td>
<td>6.96</td>
<td>7.48</td>
</tr>
<tr>
<td>35</td>
<td>95</td>
<td>0.062</td>
<td>95.9</td>
<td>11.85</td>
<td>6.93</td>
<td>6.3</td>
</tr>
<tr>
<td>40</td>
<td>96</td>
<td>0.062</td>
<td>116</td>
<td>14.84</td>
<td>6.63</td>
<td>5.5</td>
</tr>
<tr>
<td>45</td>
<td>97</td>
<td>0.063</td>
<td>103.4</td>
<td>13.17</td>
<td>6.45</td>
<td>5.16</td>
</tr>
<tr>
<td>50</td>
<td>97</td>
<td>0.063</td>
<td>100.8</td>
<td>12.93</td>
<td>6.39</td>
<td>4.8</td>
</tr>
<tr>
<td>55</td>
<td>97</td>
<td>0.063</td>
<td>99.8</td>
<td>12.88</td>
<td>6.36</td>
<td>4.6</td>
</tr>
<tr>
<td>60</td>
<td>97</td>
<td>0.063</td>
<td>98.9</td>
<td>12.79</td>
<td>6.36</td>
<td>4.53</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Slocan Lake Stewardship Society-Water Sampling Data Sheet

Site: #3 Off Wee Sandy Creek
Date: 02-Sep-13
Time:
Samplers: Richard, Wayne, Therese, Bruce
Elev.
Lat: 50° 00' 35" N
Long: 117° 24' 39" W
Temp.
Weather:
UTM: 0470669 5539776

<table>
<thead>
<tr>
<th>Depth (meters)</th>
<th>Sp. Cond. (µS/cm)</th>
<th>TDS (g/litre)</th>
<th>Diss. Oxy (%)</th>
<th>Diss. Oxy (mg/l)</th>
<th>pH</th>
<th>Temp. (deg C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>91</td>
<td>0.059</td>
<td>133.7</td>
<td>12.42</td>
<td>7.66</td>
<td>18.63</td>
</tr>
<tr>
<td>10</td>
<td>92</td>
<td>0.06</td>
<td>131.1</td>
<td>12.65</td>
<td>7.67</td>
<td>17.12</td>
</tr>
<tr>
<td>15</td>
<td>88</td>
<td>0.057</td>
<td>128.7</td>
<td>13.83</td>
<td>7.52</td>
<td>12.18</td>
</tr>
<tr>
<td>20</td>
<td>90</td>
<td>0.058</td>
<td>115.4</td>
<td>13.11</td>
<td>7.23</td>
<td>9.72</td>
</tr>
<tr>
<td>25</td>
<td>93</td>
<td>0.061</td>
<td>91.4</td>
<td>10.94</td>
<td>7.35</td>
<td>7.42</td>
</tr>
<tr>
<td>30</td>
<td>95</td>
<td>0.062</td>
<td>91.6</td>
<td>11.3</td>
<td>7.29</td>
<td>6.35</td>
</tr>
<tr>
<td>35</td>
<td>97</td>
<td>0.063</td>
<td>111</td>
<td>13.75</td>
<td>7.11</td>
<td>5.54</td>
</tr>
<tr>
<td>40</td>
<td>97</td>
<td>0.063</td>
<td>102.8</td>
<td>12.97</td>
<td>7.02</td>
<td>5.11</td>
</tr>
<tr>
<td>45</td>
<td>98</td>
<td>0.064</td>
<td>100.7</td>
<td>12.99</td>
<td>6.98</td>
<td>4.84</td>
</tr>
<tr>
<td>50</td>
<td>98</td>
<td>0.064</td>
<td>99.4</td>
<td>12.78</td>
<td>6.94</td>
<td>4.63</td>
</tr>
<tr>
<td>55</td>
<td>98</td>
<td>0.064</td>
<td>95.9</td>
<td>12.41</td>
<td>6.95</td>
<td>4.5</td>
</tr>
<tr>
<td>60</td>
<td>98</td>
<td>0.064</td>
<td>95.6</td>
<td>12.12</td>
<td>6.95</td>
<td>4.46</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth (meters)</td>
<td>Sp. Cond. (µS/cm)</td>
<td>TDS (g/litre)</td>
<td>Diss. Oxy (%)</td>
<td>Diss. Oxy (mg/l)</td>
<td>pH</td>
<td>Temp. (deg C)</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>------------------</td>
<td>----</td>
<td>---------------</td>
</tr>
<tr>
<td>5</td>
<td>93</td>
<td>0.061</td>
<td>121.5</td>
<td>11.48</td>
<td>7.68</td>
<td>18.09</td>
</tr>
<tr>
<td>10</td>
<td>93</td>
<td>0.06</td>
<td>124.5</td>
<td>12.14</td>
<td>7.68</td>
<td>16.54</td>
</tr>
<tr>
<td>15</td>
<td>89</td>
<td>0.058</td>
<td>120.7</td>
<td>13.25</td>
<td>7.47</td>
<td>11.21</td>
</tr>
<tr>
<td>20</td>
<td>92</td>
<td>0.06</td>
<td>89.9</td>
<td>10.57</td>
<td>7.37</td>
<td>8.18</td>
</tr>
<tr>
<td>25</td>
<td>97</td>
<td>0.063</td>
<td>90.5</td>
<td>11.28</td>
<td>7.36</td>
<td>5.98</td>
</tr>
<tr>
<td>30</td>
<td>98</td>
<td>0.063</td>
<td>106.2</td>
<td>13.48</td>
<td>7.17</td>
<td>5.38</td>
</tr>
<tr>
<td>35</td>
<td>99</td>
<td>0.064</td>
<td>100.5</td>
<td>12.82</td>
<td>7.1</td>
<td>5.01</td>
</tr>
<tr>
<td>40</td>
<td>99</td>
<td>0.065</td>
<td>98.5</td>
<td>12.65</td>
<td>7.07</td>
<td>4.86</td>
</tr>
<tr>
<td>45</td>
<td>99</td>
<td>0.064</td>
<td>97.8</td>
<td>12.6</td>
<td>7.05</td>
<td>4.67</td>
</tr>
<tr>
<td>50</td>
<td>99</td>
<td>0.064</td>
<td>97.6</td>
<td>12.63</td>
<td>7.06</td>
<td>4.51</td>
</tr>
<tr>
<td>55</td>
<td>99</td>
<td>0.064</td>
<td>97.7</td>
<td>12.67</td>
<td>7.05</td>
<td>4.42</td>
</tr>
<tr>
<td>60</td>
<td>99</td>
<td>0.064</td>
<td>98</td>
<td>12.71</td>
<td>7.06</td>
<td>4.4</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Slocan Lake 2010-2013 Water Quality Monitoring Project

APPENDIX II
Nutrients and Total Metals
Laboratory Results
Sales Invoice

Galena Environmental SLSS
8075 Upper Galena Farm Rd
Silverton
V0G 1S0
Canada
British Columbia

<table>
<thead>
<tr>
<th>Line No.</th>
<th>Item Code</th>
<th>Description</th>
<th>Unit Price</th>
<th>Qty</th>
<th>Amount</th>
<th>Tax %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CHLORA</td>
<td>Chlorophyl a</td>
<td>40.00</td>
<td>9</td>
<td>360.00</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>E-NO2+NO3</td>
<td>Nitrate and Nitrite</td>
<td>15.00</td>
<td>9</td>
<td>135.00</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>E-TN</td>
<td>Total Nitrogen</td>
<td>30.00</td>
<td>9</td>
<td>270.00</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>E-PHOS</td>
<td>Total Phosphate</td>
<td>20.00</td>
<td>9</td>
<td>180.00</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>E-TMET</td>
<td>Total Metals</td>
<td>45.00</td>
<td>5</td>
<td>225.00</td>
<td>12</td>
</tr>
</tbody>
</table>

Payment Terms : Net 30 Days

Interest at a rate of 2% per Month (24% per Annum) will be charged on overdue accounts.

Total excl. Tax : 1,170.00
HST @ 12% : 140.40
Total to be paid : 1,310.40 CAD

Thank You!

All business is undertaken subject to the Company’s General Condition of Business which are available on request.
Registered Office: Eco Tech Laboratory Limited, 2953 Shuswap Road, Kamloops, BC V2H 1S9 Canada
G.S.T Registration Number 88399 8312 RT0001
ANALYTICAL RESULTS - E10-2075

Galena Environmental
8075 Upper Galena Farm Rd
Silverton BC
V0G 1S0

SAMPLE IDENTIFICATION:
- 9 Water Samples Received: August 25, 2010
- Samples Dated: August 23, 2010
- Labelled:
 - #1: Site 1 @ 5m
 - #4: Site 2 @ 50m
 - #7: Site 4 @ 5m
 - #2: Site 1 @ 50m
 - #5: Site 3 @ 5m
 - #8: Site 4 @ 50m
 - #3: Site 2 @ 5m
 - #6: Site 3 @ 50m
 - #9: Site 4 @ 5m (QC/QA)

PARAMETERS

<table>
<thead>
<tr>
<th>Parameters</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrate (as N)</td>
<td>0.053</td>
<td>0.100</td>
<td>0.050</td>
<td>0.102</td>
<td>0.051</td>
<td>0.101</td>
<td>0.049</td>
<td>0.101</td>
<td>0.050</td>
</tr>
<tr>
<td>Nitrite (as N)</td>
<td>0.004</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
<td>0.004</td>
<td>0.004</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
</tr>
<tr>
<td>TKN</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>0.05</td>
<td>0.10</td>
<td>0.05</td>
<td>0.10</td>
<td>0.05</td>
<td>0.10</td>
<td>0.05</td>
<td>0.10</td>
<td>0.05</td>
</tr>
<tr>
<td>Chlorophyll A</td>
<td><0.5</td>
<td>0.5</td>
<td><0.5</td>
<td>0.5</td>
<td><0.5</td>
<td>0.9</td>
<td><0.5</td>
<td>0.6</td>
<td>0.5</td>
</tr>
<tr>
<td>Total Phosphate (as P)</td>
<td>0.031</td>
<td>0.031</td>
<td>0.038</td>
<td>0.032</td>
<td>0.034</td>
<td>0.039</td>
<td>0.033</td>
<td>0.033</td>
<td>0.032</td>
</tr>
</tbody>
</table>
Galena Environmental

Results Continued

<table>
<thead>
<tr>
<th>PARAMETERS</th>
<th>YOUR SAMPLES</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL METALS:</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td></td>
</tr>
<tr>
<td>Aluminum</td>
<td>7 1 - - - - 8 3 8</td>
<td>ug/L</td>
</tr>
<tr>
<td>Antimony</td>
<td><1 <1 - - - - <1 <1 <1</td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>0.06 0.09 - - - - 0.06 0.09 0.06</td>
<td>ug/L</td>
</tr>
<tr>
<td>Barium</td>
<td>19 23 - - - - 24 24 23</td>
<td></td>
</tr>
<tr>
<td>Beryllium</td>
<td><0.1 <0.1 - - - - <0.1 <0.1 <0.1</td>
<td>ug/L</td>
</tr>
<tr>
<td>Bismuth</td>
<td><1 <1 - - - - <1 <1 <1</td>
<td></td>
</tr>
<tr>
<td>Boron</td>
<td><0.01 <0.01 - - - - <0.01 <0.01 <0.01</td>
<td>mg/L</td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.106 0.111 - - - - 0.097 0.113 0.112</td>
<td>ug/L</td>
</tr>
<tr>
<td>Calcium</td>
<td>11.12 13.11 - - - - 12.04 13.07 12.35</td>
<td>mg/L</td>
</tr>
<tr>
<td>Chromium</td>
<td>0.1 0.1 - - - - 0.1 0.2 0.2</td>
<td></td>
</tr>
<tr>
<td>Cobalt</td>
<td><0.1 <0.1 - - - - <0.1 <0.1 <0.1</td>
<td>mg/L</td>
</tr>
<tr>
<td>Copper</td>
<td>0.2 0.3 - - - - 0.3 0.2 0.2</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>0.005 0.005 - - - - 0.005 <0.005 0.01</td>
<td>mg/L</td>
</tr>
<tr>
<td>Lead</td>
<td><0.1 0.2 - - - - 0.5 0.2 0.4</td>
<td>mg/L</td>
</tr>
<tr>
<td>Magnesium</td>
<td>1.61 1.94 - - - - 1.73 1.96 1.75</td>
<td>mg/L</td>
</tr>
<tr>
<td>Manganese</td>
<td><1 <1 - - - - <1 <1 <1</td>
<td>mg/L</td>
</tr>
<tr>
<td>Molybdenum</td>
<td><1 <1 - - - - <1 <1 <1</td>
<td>mg/L</td>
</tr>
<tr>
<td>Nickel</td>
<td><1 <1 - - - - <1 <1 <1</td>
<td>mg/L</td>
</tr>
<tr>
<td>Potassium</td>
<td>0.43 0.47 - - - - 0.42 0.45 0.43</td>
<td>mg/L</td>
</tr>
<tr>
<td>Selenium</td>
<td>0.28 0.42 - - - - 0.35 0.36 0.38</td>
<td>ug/L</td>
</tr>
<tr>
<td>Silicon</td>
<td>2.48 2.73 - - - - 2.58 2.77 2.6</td>
<td>mg/L</td>
</tr>
<tr>
<td>Silver</td>
<td><0.005 <0.005 - - - - 0.005 0.005 <0.005</td>
<td>ug/L</td>
</tr>
<tr>
<td>Sodium</td>
<td>0.85 1.02 - - - - 0.86 1 0.89</td>
<td>mg/L</td>
</tr>
<tr>
<td>Tin</td>
<td><0.1 <0.1 - - - - <0.1 <0.1 <0.1</td>
<td>u/g/L</td>
</tr>
<tr>
<td>Titanium</td>
<td><0.007 <0.007 - - - - <0.007 <0.007 <0.007</td>
<td>mg/L</td>
</tr>
<tr>
<td>Uranium</td>
<td>0.28 0.3 - - - - 0.3 0.32 0.3</td>
<td>mg/L</td>
</tr>
<tr>
<td>Vanadium</td>
<td>0.2 0.1 - - - - 0.2 0.2 0.2</td>
<td>mg/L</td>
</tr>
<tr>
<td>Yttrium</td>
<td><1 <1 - - - - <1 <1 <1</td>
<td>mg/L</td>
</tr>
<tr>
<td>Zinc</td>
<td>12.4 15.8 - - - - 12.7 15.3 14.1</td>
<td>ug/L</td>
</tr>
</tbody>
</table>

JA/ap
e-mail: juice@galenaenvironmental.ca

All business is undertaken subject to the Company’s General Conditions of Business, which are available on request. Registered Office: Eco Tech Laboratory Ltd., 2953 Shuswap Road, Kamloops, BC, V2C 1V7 Canada.

ECO TECH LABORATORY LTD.
John Andrew, BSc.
Environmental Lab Manager
Eco Tech Laboratory Limited
2953 Shuswap Road
Kamloops BC
V2H 1S9 Canada
Tel: +1 250 573 5700
Fax: +1 250 573 4557
Toll Free: +1 877 573 5755
www.stewartgroupglobal.com

Sales Invoice
StewartGroup
Geochemical & Assay

Galena Environmental SLSS
8075 Upper Galena Farm Rd
Silverton
V0G 1S0
British Columbia
Canada

<table>
<thead>
<tr>
<th>Line No.</th>
<th>Item Code</th>
<th>Description</th>
<th>Unit Price</th>
<th>Qty</th>
<th>Amount</th>
<th>Tax %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CHLORA</td>
<td>Chlorophyll a</td>
<td>30.00</td>
<td>8</td>
<td>240.00</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>E-TPO4</td>
<td>Total Phosphate</td>
<td>15.00</td>
<td>8</td>
<td>120.00</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>E-TN</td>
<td>Total Nitrogen</td>
<td>22.00</td>
<td>8</td>
<td>176.00</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>E-NO2+NO3</td>
<td>Nitrate and Nitrite</td>
<td>10.00</td>
<td>8</td>
<td>80.00</td>
<td>12</td>
</tr>
</tbody>
</table>

Payment Terms : Net 30 Days
Interest at a rate of 2% per Month (24% per Annum) will be charged on overdue accounts.

Total excl. Tax : 616.00
HST @ 12% : 73.92
Total to be paid : 689.92 CAD

Thank You!

All business is undertaken subject to the Company’s General Condition of Business which are available on request.
Registered Office: Eco Tech Laboratory Limited, 2953 Shuswap Road, Kamloops, BC V2H 1S9 Canada
G.S.T Registration Number 88399 8312 RT0001
ANALYTICAL RESULTS - E10-2374

Galena Environmental
8075 Upper Galena Farm Rd
Silverton BC
V0G 1S0

5-Oct-10

SAMPLE IDENTIFICATION:

8 Water Samples Received: September 27, 2010
Samples Dated: September 22, 2010
Labelled:

1: Site 1 @ 5m
2: Site 1 @ 50m
3: Site 2 @ 5m
4: Site 2 @ 50m
5: Site 3 @ 5m
6: Site 3 @ 50m
7: Site 4 @ 5m
8: Site 4 @ 50m

<table>
<thead>
<tr>
<th>PARAMETERS</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrate (as N)</td>
<td>0.034</td>
<td>0.071</td>
<td>0.033</td>
<td>0.074</td>
<td>0.033</td>
<td>0.077</td>
<td>0.036</td>
<td>0.080</td>
</tr>
<tr>
<td>Nitrite (as N)</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
<td><0.003</td>
<td><0.003</td>
<td><0.003</td>
</tr>
<tr>
<td>TKN</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td><0.05</td>
<td>0.07</td>
<td><0.05</td>
<td>0.07</td>
<td><0.05</td>
<td>0.08</td>
<td><0.05</td>
<td>0.08</td>
</tr>
<tr>
<td>Chlorophyll A</td>
<td><0.5</td>
<td>0.7</td>
<td><0.5</td>
<td>0.8</td>
<td><0.5</td>
<td>0.8</td>
<td><0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Total Phosphate (as P)</td>
<td>0.018</td>
<td>0.022</td>
<td>0.021</td>
<td>0.019</td>
<td>0.017</td>
<td>0.020</td>
<td>0.019</td>
<td>0.019</td>
</tr>
</tbody>
</table>

JA/ap

All business is undertaken subject to the Company's General Conditions of Business which are available on request. Registered Office: Eco Tech Laboratory Ltd., 2953 Shuswap Road, Kamloops, BC V2N 1S9, Canada

ECO TECH LABORATORY LTD.
John Andrew, BSc.
Environmental Lab Manager
Sales Invoice

StewartGroup
Geochemical & Assay

Galena Environmental SLSS
8075 Upper Galena Farm Rd
Silverton
V0G 1S0
Canada

British Columbia

<table>
<thead>
<tr>
<th>Line No.</th>
<th>Item Code</th>
<th>Description</th>
<th>Unit Price</th>
<th>Qty</th>
<th>Amount</th>
<th>Tax %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CHLORA</td>
<td>Chlorophyll a</td>
<td>30.00</td>
<td>8</td>
<td>240.00</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>E-NO2+NO3</td>
<td>Nitrate and Nitrite</td>
<td>10.00</td>
<td>8</td>
<td>80.00</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>E-TN</td>
<td>Total Nitrogen</td>
<td>22.00</td>
<td>8</td>
<td>176.00</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>E-TPO4</td>
<td>Total Phosphate</td>
<td>15.00</td>
<td>8</td>
<td>120.00</td>
<td>12</td>
</tr>
</tbody>
</table>

Invoice Number : 10105403
Invoice Date : 19/11/2010
Our Reference : 6541
E10-2805

Payment Terms : Net 30 Days

Interest at a rate of 2% per Month (24% per Annum) will be charged on overdue accounts.

Total excl. Tax : 616.00

HST @ 12% : 73.92

Total to be paid : 689.92 CAD

Thank You!

All business is undertaken subject to the Company’s General Conditions of Business which are available on request.
Registered Office: Eco Tech Laboratory Limited, 2953 Shuswap Road, Kamloops, BC V2H 1S9 Canada
G.S.T Registration Number: 88399 8312 RT0001
ANALYTICAL RESULTS - E10-2805

Galena Environmental
8075 Upper Galena Farm Rd
Silverton BC
V0G 1S0
17-Nov-10

SAMPLE IDENTIFICATION:
8 Water
Samples Received: November 8, 2010
Samples Dated: October 24, 2010
Labelled:
#1: Site 1 @ 5m
#2: Site 1 @ 50m
#3: Site 2 @ 5m
#4: Site 2 @ 50m
#5: Site 3 @ 5m
#6: Site 3 @ 50m
#7: Site 4 @ 5m
#8: Site 4 @ 50m

<table>
<thead>
<tr>
<th>PARAMETERS</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrate (as N)</td>
<td>0.048</td>
<td>0.095</td>
<td>0.05</td>
<td>0.097</td>
<td>0.045</td>
<td>0.103</td>
<td>0.046</td>
<td>0.095</td>
</tr>
<tr>
<td>Nitrite (as N)</td>
<td>0.004</td>
<td>0.004</td>
<td>0.003</td>
<td>0.006</td>
<td><0.003</td>
<td>0.003</td>
<td>0.003</td>
<td>0.006</td>
</tr>
<tr>
<td>TKN</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td>0.304</td>
<td><0.05</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>0.05</td>
<td>0.1</td>
<td>0.05</td>
<td>0.1</td>
<td><0.05</td>
<td>0.1</td>
<td>0.353</td>
<td>0.1</td>
</tr>
<tr>
<td>Chlorophyll "a" (ug/L)</td>
<td>0.9</td>
<td><0.5</td>
<td>0.8</td>
<td>0.6</td>
<td><0.5</td>
<td><0.5</td>
<td>0.6</td>
<td><0.5</td>
</tr>
<tr>
<td>Total Phosphate (as P)</td>
<td>0.035</td>
<td>0.041</td>
<td>0.032</td>
<td>0.043</td>
<td>0.034</td>
<td>0.038</td>
<td>0.037</td>
<td>0.023</td>
</tr>
</tbody>
</table>

Results expressed as mg/L unless otherwise specified

ECO TECH LABORATORY LTD.
John Andrew, BSc.
Environmental Lab Manager

All business is undertaken subject to the Company’s General Conditions of Business which are available on request. Registered Office: Eco Tech Laboratory Ltd., 2953 Shuswap Road, Kamloops, BC V2H 1S9 Canada.
CERTIFICATE OF ANALYSIS

CLIENT

Galena Environmental Ltd.
8075 Upper Galena Farm Road- PO Box 37

Silverton BC
VOG 2B0

TEL 1-250-358-2872
FAX 1-250-358-2114

ATTENTION

Luce Paquin

RECEIVED / TEMP

Jun-01-11 10:00 / 13.0 °C

REPORTED

Jun-08-11

COC #(s)

30081

WORK ORDER

K1F0046

PROJECT

Slocan Lake Stewartship Society

General Comments:

Methods not described in these publications are conducted according to procedures accepted by appropriate regulatory agencies, and/or are done in accordance with recognized professional standards using accepted testing methodologies and quality control efforts except where otherwise agreed to by the client.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued unless otherwise agreed to in writing.

- All solids results are reported on a dry weight basis unless otherwise noted
- Units: mg/kg = milligrams per kilogram, equivalent to parts per million (ppm)
 mg/L = milligrams per litre, equivalent to parts per million (ppm)
 ug/L = micrograms per litre, equivalent to parts per billion (ppb)
 ug/g = micrograms per gram, equivalent to parts per million (ppm)
 ug/m3 = micrograms per cubic meter of air
- "RDL" Reported detection limit
- "<" Less than reported detection limit
- "AO" Aesthetic objective
- "MAC" Maximum acceptable concentration (health-related guideline)
- "LAB" RMD = Richmond location, KEL = Kelowna location, EDM = Edmonton location, SUB = Subcontracted

Please contact CARO if more information is needed or to provide feedback on our services.

CARO Analytical Services

Final Review Per: Jennifer Shanko, AScT
Administration Coordinator

CARO Analytical Services

#120 12791 Clarke Place
Richmond, BC V6V 2H9
Tel: 604-279-1499 Fax: 604-279-1599

#102 3677 Highway 97N
Kelowna, BC V1X 5C3
Tel: 250-765-9646 Fax: 250-765-3893

9523 42 Avenue
Edmonton, AB T6E 5R2
Tel: 780-628-3737

www.caro.ca
SAMPLE DATA

CLIENT
Galena Environmental Ltd.

PROJECT
Slocan Lake Stewartship Society

WORK ORDER #
K1F0046

REPORTED
Jun-08-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site 1 - 5m (K1F0046-01) ** Matrix: Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sampled: May-31-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>1.4</td>
<td>0.1</td>
<td>ug/L</td>
<td>Jun-06-11</td>
<td>Jun-08-11</td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.07</td>
<td>0.01</td>
<td>mg/L</td>
<td>Jun-01-11</td>
<td>Jun-02-11</td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.06</td>
<td>0.01</td>
<td>mg/L</td>
<td>Jun-01-11</td>
<td>Jun-02-11</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td>Jun-01-11</td>
<td>Jun-02-11</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.05</td>
<td>0.05</td>
<td>mg/L</td>
<td>Jun-01-11</td>
<td>Jun-02-11</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.12</td>
<td>0.05</td>
<td>mg/L</td>
<td>Jun-01-11</td>
<td>Jun-02-11</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>0.046</td>
<td>0.005</td>
<td>mg/L</td>
<td>Jun-01-11</td>
<td>Jun-02-11</td>
</tr>
<tr>
<td>Site 2 - 5m (K1F0046-02) ** Matrix: Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sampled: May-31-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>1.1</td>
<td>0.1</td>
<td>ug/L</td>
<td>Jun-06-11</td>
<td>Jun-08-11</td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.06</td>
<td>0.01</td>
<td>mg/L</td>
<td>Jun-01-11</td>
<td>Jun-02-11</td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.06</td>
<td>0.01</td>
<td>mg/L</td>
<td>Jun-01-11</td>
<td>Jun-02-11</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>< 0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.06</td>
<td>0.05</td>
<td>mg/L</td>
<td>Jun-01-11</td>
<td>Jun-02-11</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>0.014</td>
<td>0.005</td>
<td>mg/L</td>
<td>Jun-01-11</td>
<td>Jun-02-11</td>
</tr>
<tr>
<td>Site 3 - 5m (K1F0046-03) ** Matrix: Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sampled: May-31-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>1.6</td>
<td>0.1</td>
<td>ug/L</td>
<td>Jun-06-11</td>
<td>Jun-08-11</td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.07</td>
<td>0.01</td>
<td>mg/L</td>
<td>Jun-01-11</td>
<td>Jun-02-11</td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.06</td>
<td>0.01</td>
<td>mg/L</td>
<td>Jun-01-11</td>
<td>Jun-02-11</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td>Jun-01-11</td>
<td>Jun-02-11</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.07</td>
<td>0.05</td>
<td>mg/L</td>
<td>Jun-01-11</td>
<td>Jun-02-11</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.14</td>
<td>0.05</td>
<td>mg/L</td>
<td>Jun-01-11</td>
<td>Jun-02-11</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>< 0.005</td>
<td></td>
<td>mg/L</td>
<td>Jun-01-11</td>
<td>Jun-02-11</td>
</tr>
<tr>
<td>Site 4 - 5m (K1F0046-04) ** Matrix: Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sampled: May-31-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>1.2</td>
<td>0.1</td>
<td>ug/L</td>
<td>Jun-06-11</td>
<td>Jun-08-11</td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.08</td>
<td>0.01</td>
<td>mg/L</td>
<td>Jun-01-11</td>
<td>Jun-02-11</td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.08</td>
<td>0.01</td>
<td>mg/L</td>
<td>Jun-01-11</td>
<td>Jun-02-11</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td></td>
<td>mg/L</td>
<td>Jun-01-11</td>
<td>Jun-02-11</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.13</td>
<td>0.05</td>
<td>mg/L</td>
<td>Jun-01-11</td>
<td>Jun-02-11</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.20</td>
<td>0.05</td>
<td>mg/L</td>
<td>Jun-01-11</td>
<td>Jun-02-11</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>0.050</td>
<td>0.005</td>
<td>mg/L</td>
<td>Jun-01-11</td>
<td>Jun-02-11</td>
</tr>
<tr>
<td>Site 1 - 50m (K1F0046-05) ** Matrix: Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sampled: May-31-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>1.4</td>
<td>0.1</td>
<td>ug/L</td>
<td>Jun-06-11</td>
<td>Jun-08-11</td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.07</td>
<td>0.01</td>
<td>mg/L</td>
<td>Jun-01-11</td>
<td>Jun-02-11</td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.07</td>
<td>0.01</td>
<td>mg/L</td>
<td>Jun-01-11</td>
<td>Jun-02-11</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td></td>
<td>mg/L</td>
<td>Jun-01-11</td>
<td>Jun-02-11</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.08</td>
<td>0.05</td>
<td>mg/L</td>
<td>Jun-01-11</td>
<td>Jun-03-11</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.15</td>
<td>0.05</td>
<td>mg/L</td>
<td>Jun-01-11</td>
<td>Jun-03-11</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>0.023</td>
<td>0.005</td>
<td>mg/L</td>
<td>Jun-01-11</td>
<td>Jun-02-11</td>
</tr>
<tr>
<td>Site 2 - 50m (K1F0046-06) ** Matrix: Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sampled: May-31-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>0.8</td>
<td>0.1</td>
<td>ug/L</td>
<td>Jun-06-11</td>
<td>Jun-08-11</td>
</tr>
</tbody>
</table>
SAMPLE DATA

General Parameters, Continued

<table>
<thead>
<tr>
<th>Site 2 - 50m (K1F0046-06)</th>
<th>Matrix: Water</th>
<th>Sampled: May-31-11, Continued</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.07</td>
<td>0.01 mg/L</td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.07</td>
<td>0.01 mg/L</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td>0.01 mg/L</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.08</td>
<td>0.05 mg/L</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.15</td>
<td>0.05 mg/L</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>0.031</td>
<td>0.005 mg/L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site 3 - 50m (K1F0046-07)</th>
<th>Matrix: Water</th>
<th>Sampled: May-31-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>1.5</td>
<td>0.1 ug/L</td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.08</td>
<td>0.01 mg/L</td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.08</td>
<td>0.01 mg/L</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td>0.01 mg/L</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.12</td>
<td>0.05 mg/L</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.20</td>
<td>0.05 mg/L</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>0.008</td>
<td>0.005 mg/L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site 4 - 50m (K1F0046-08)</th>
<th>Matrix: Water</th>
<th>Sampled: May-31-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>1.4</td>
<td>0.1 ug/L</td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.08</td>
<td>0.01 mg/L</td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.08</td>
<td>0.01 mg/L</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td>0.01 mg/L</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.09</td>
<td>0.05 mg/L</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.16</td>
<td>0.05 mg/L</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>0.064</td>
<td>0.005 mg/L</td>
</tr>
<tr>
<td>Analysis Description</td>
<td>Method Reference</td>
<td>Location</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Chlorophyll-A</td>
<td>APHA 10200H</td>
<td>KEL</td>
</tr>
<tr>
<td>Nitrate by IC</td>
<td>APHA 4110 B</td>
<td>KEL</td>
</tr>
<tr>
<td>Nitrite by IC</td>
<td>APHA 4110 B</td>
<td>KEL</td>
</tr>
<tr>
<td>Total Nitrogen (TKN + NO3-N+NO2-N)</td>
<td>Calc</td>
<td>KEL</td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>EPA 351.2</td>
<td>KEL</td>
</tr>
<tr>
<td>Phosphorus, Total (persulfate)</td>
<td>APHA 4500P:B.5/E</td>
<td>KEL</td>
</tr>
</tbody>
</table>
The following section reports quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with quality control samples that ensure your data is of the highest quality. Common QC types include:

- **Method Blank (Blk):** Laboratory reagent water is carried through sample preparation and analysis steps. Method Blanks indicate that results are free from contamination, i.e. not biased high from sources such as the sample container or the laboratory environment.

- **Duplicate (Dup):** Preparation and analysis of a replicate aliquot of a sample. Duplicates provide a measure of the analytical method's precision, i.e. how reproducible a result is. Duplicates are only reported if they are associated with your sample data.

- **Blank Spike (BS):** A known amount of standard is carried through sample preparation and analysis steps. Blank Spikes, also known as laboratory control samples (LCS), are prepared from a different source of standard than used for the calibration. They ensure that the calibration is acceptable (i.e. not biased high or low) and also provide a measure of the analytical method's accuracy (i.e. closeness of the result to a target value).

- **Standard Reference Material (SRM):** A material of similar matrix to the samples, externally certified for the parameter(s) listed. Standard Reference Materials ensure that the preparation steps in the method are adequate to achieve acceptable recoveries of the parameter(s) tested for.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% REC Limits</th>
<th>% RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Parameters, Batch K102167</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (K102167-BLK1)</td>
<td>Prepared: Jun-01-11, Analyzed: Jun-02-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (K102167-BLK2)</td>
<td>Prepared: Jun-01-11, Analyzed: Jun-02-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (K102167-BLK3)</td>
<td>Prepared: Jun-01-11, Analyzed: Jun-02-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Parameters, Batch K102188</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (K102188-BLK1)</td>
<td>Prepared: Jun-01-11, Analyzed: Jun-02-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>< 0.05</td>
<td>0.05</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (K102188-BLK2)</td>
<td>Prepared: Jun-01-11, Analyzed: Jun-02-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>< 0.05</td>
<td>0.05</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS (K102188-BS1)</td>
<td>Prepared: Jun-01-11, Analyzed: Jun-02-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>9.55</td>
<td>0.50</td>
<td>mg/L</td>
<td>10.0</td>
<td>96</td>
<td>89-118</td>
<td></td>
</tr>
<tr>
<td>LCS (K102188-BS2)</td>
<td>Prepared: Jun-01-11, Analyzed: Jun-02-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>10.6</td>
<td>0.50</td>
<td>mg/L</td>
<td>10.0</td>
<td>106</td>
<td>89-118</td>
<td></td>
</tr>
<tr>
<td>Duplicate (K102188-DUP2)</td>
<td>Source: K1F0046-02</td>
<td>Prepared: Jun-01-11, Analyzed: Jun-02-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>< 0.05</td>
<td>0.05</td>
<td>mg/L</td>
<td>< 0.05</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Parameters, Batch K102213</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (K102213-BLK1)</td>
<td>Prepared: Jun-01-11, Analyzed: Jun-02-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (K102213-BLK2)</td>
<td>Prepared: Jun-01-11, Analyzed: Jun-02-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (K102213-BLK3)</td>
<td>Prepared: Jun-01-11, Analyzed: Jun-02-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analyte</td>
<td>Result</td>
<td>Limit</td>
<td>Units</td>
<td>Source</td>
<td>% REC</td>
<td>% RPD</td>
<td>Notes</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Blank (K102213-BLK4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (K102213-BLK5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (K102213-BLK6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS (K102213-BS1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>4.05</td>
<td>0.01</td>
<td>mg/L</td>
<td>4.00</td>
<td>101</td>
<td>85-115</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>3.99</td>
<td>0.01</td>
<td>mg/L</td>
<td>4.00</td>
<td>100</td>
<td>85-115</td>
<td></td>
</tr>
<tr>
<td>LCS (K102213-BS2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>4.15</td>
<td>0.01</td>
<td>mg/L</td>
<td>4.00</td>
<td>104</td>
<td>85-115</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>4.09</td>
<td>0.01</td>
<td>mg/L</td>
<td>4.00</td>
<td>102</td>
<td>85-115</td>
<td></td>
</tr>
<tr>
<td>LCS (K102213-BS3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>4.23</td>
<td>0.01</td>
<td>mg/L</td>
<td>4.00</td>
<td>106</td>
<td>85-115</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>4.15</td>
<td>0.01</td>
<td>mg/L</td>
<td>4.00</td>
<td>104</td>
<td>85-115</td>
<td></td>
</tr>
<tr>
<td>LCS (K102213-BS4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>3.79</td>
<td>0.01</td>
<td>mg/L</td>
<td>4.00</td>
<td>95</td>
<td>85-115</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>3.75</td>
<td>0.01</td>
<td>mg/L</td>
<td>4.00</td>
<td>94</td>
<td>85-115</td>
<td></td>
</tr>
<tr>
<td>LCS (K102213-BS5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>3.57</td>
<td>0.01</td>
<td>mg/L</td>
<td>4.00</td>
<td>89</td>
<td>85-115</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>3.55</td>
<td>0.01</td>
<td>mg/L</td>
<td>4.00</td>
<td>89</td>
<td>85-115</td>
<td></td>
</tr>
<tr>
<td>LCS (K102213-BS6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>3.94</td>
<td>0.01</td>
<td>mg/L</td>
<td>4.00</td>
<td>99</td>
<td>85-115</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>3.90</td>
<td>0.01</td>
<td>mg/L</td>
<td>4.00</td>
<td>97</td>
<td>85-115</td>
<td></td>
</tr>
<tr>
<td>Duplicate (K102213-DUP5)</td>
<td></td>
<td></td>
<td></td>
<td>Source:K1F0046-06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.074</td>
<td>0.01</td>
<td>mg/L</td>
<td>0.073</td>
<td>1</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td>< 0.01</td>
<td></td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Limit</th>
<th>Units</th>
<th>Source</th>
<th>% REC</th>
<th>% RPD</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank (K102216-BLK1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>< 0.05</td>
<td>0.05</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS (K102216-BS1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>10.5</td>
<td>0.50</td>
<td>mg/L</td>
<td>10.0</td>
<td>105</td>
<td>89-118</td>
<td></td>
</tr>
<tr>
<td>Duplicate (K102216-DUP1)</td>
<td></td>
<td></td>
<td></td>
<td>Source:K1F0046-08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.08</td>
<td>0.05</td>
<td>mg/L</td>
<td>0.09</td>
<td></td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Limit</th>
<th>Units</th>
<th>Source</th>
<th>% REC</th>
<th>% RPD</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank (K102239-BLK1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>< 0.1</td>
<td>0.1</td>
<td>ug/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CERTIFICATE OF ANALYSIS

CLIENT
Galena Environmental Ltd.
8075 Upper Galena Farm Road- PO Box 37
Silverton BC

ATTENTION
Luce Paquin

RECEIVED / TEMP
Jun-30-11 09:40 / 10.0 °C

REPORTED
Jul-07-11

PROJECT
Slocan Lake Stewartship Society

WORK ORDER
K1F1337

COC #(s)
No paperwork

General Comments:

Methods not described in these publications are conducted according to procedures accepted by appropriate regulatory agencies, and/or are done in accordance with recognized professional standards using accepted testing methodologies and quality control efforts except where otherwise agreed to by the client.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued unless otherwise agreed to in writing.

- All solids results are reported on a dry weight basis unless otherwise noted
- Units: mg/kg = milligrams per kilogram, equivalent to parts per million (ppm)
 mg/L = milligrams per litre, equivalent to parts per million (ppm)
 ug/L = micrograms per litre, equivalent to parts per billion (ppb)
 ug/g = micrograms per gram, equivalent to parts per million (ppm)
 ug/m³ = micrograms per cubic meter of air
- "RDL" Reported detection limit
- "<" Less than reported detection limit
- "AO" Aesthetic objective
- "MAC" Maximum acceptable concentration (health-related guideline)
- "LAB" RMD = Richmond location, KEL = Kelowna location, EDM = Edmonton location, SUB = Subcontracted

Please contact CARO if more information is needed or to provide feedback on our services.

CARO Analytical Services

Final Review Per: Ed Hoppe, B.Sc, P.Chem For Jennifer Shanko, AsCT
Administration Coordinator

CARO Analytical Services
#120 12791 Clarke Place
Richmond, BC V6V 2H9
Tel: 604-279-1499 Fax: 604-279-1599

#102 3677 Highway 97N
Kelowna, BC V1X 5C3
Tel: 250-765-9646 Fax: 250-765-3893

9523 42 Avenue
Edmonton, AB T6E 5R2
Tel: 780-628-3737

www.caro.ca
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>0.9</td>
<td>0.1</td>
<td>ug/L</td>
<td>Jun-30-11</td>
<td>Jul-07-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.06</td>
<td>0.01</td>
<td>mg/L</td>
<td>Jul-02-11</td>
<td>Jul-02-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>0.06</td>
<td>0.01</td>
<td>mg/L</td>
<td>Jul-02-11</td>
<td>Jul-02-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>< 0.01</td>
<td></td>
<td>mg/L</td>
<td>Jul-02-11</td>
<td>Jul-02-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.08</td>
<td>0.05</td>
<td>mg/L</td>
<td>Jun-30-11</td>
<td>Jul-07-11</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>0.14</td>
<td>0.05</td>
<td>mg/L</td>
<td>Jul-02-11</td>
<td>Jul-07-11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.033</td>
<td>0.05</td>
<td>mg/L</td>
<td>Jun-30-11</td>
<td>Jul-07-11</td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>0.4</td>
<td>0.1</td>
<td>ug/L</td>
<td>Jun-30-11</td>
<td>Jul-07-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.08</td>
<td>0.01</td>
<td>mg/L</td>
<td>Jul-02-11</td>
<td>Jul-02-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.06</td>
<td>0.01</td>
<td>mg/L</td>
<td>Jul-02-11</td>
<td>Jul-02-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td></td>
<td>mg/L</td>
<td>Jul-02-11</td>
<td>Jul-02-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.09</td>
<td>0.05</td>
<td>mg/L</td>
<td>Jun-30-11</td>
<td>Jul-07-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.17</td>
<td>0.05</td>
<td>mg/L</td>
<td>Jul-02-11</td>
<td>Jul-07-11</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>Jun-30-11</td>
<td>Jul-07-11</td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>0.6</td>
<td>0.1</td>
<td>ug/L</td>
<td>Jun-30-11</td>
<td>Jul-07-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.06</td>
<td>0.01</td>
<td>mg/L</td>
<td>Jul-02-11</td>
<td>Jul-02-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.06</td>
<td>0.01</td>
<td>mg/L</td>
<td>Jul-02-11</td>
<td>Jul-02-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td></td>
<td>mg/L</td>
<td>Jul-02-11</td>
<td>Jul-02-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.07</td>
<td>0.05</td>
<td>mg/L</td>
<td>Jun-30-11</td>
<td>Jul-07-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.13</td>
<td>0.05</td>
<td>mg/L</td>
<td>Jul-02-11</td>
<td>Jul-07-11</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>0.008</td>
<td>0.005</td>
<td>mg/L</td>
<td>Jun-30-11</td>
<td>Jul-07-11</td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>0.5</td>
<td>0.1</td>
<td>ug/L</td>
<td>Jun-30-11</td>
<td>Jul-07-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.08</td>
<td>0.01</td>
<td>mg/L</td>
<td>Jul-02-11</td>
<td>Jul-02-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.08</td>
<td>0.01</td>
<td>mg/L</td>
<td>Jul-02-11</td>
<td>Jul-02-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td></td>
<td>mg/L</td>
<td>Jul-02-11</td>
<td>Jul-02-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.14</td>
<td>0.05</td>
<td>mg/L</td>
<td>Jun-30-11</td>
<td>Jul-07-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.21</td>
<td>0.05</td>
<td>mg/L</td>
<td>Jul-02-11</td>
<td>Jul-07-11</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>0.009</td>
<td>0.005</td>
<td>mg/L</td>
<td>Jun-30-11</td>
<td>Jul-07-11</td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>0.5</td>
<td>0.1</td>
<td>ug/L</td>
<td>Jun-30-11</td>
<td>Jul-07-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.08</td>
<td>0.01</td>
<td>mg/L</td>
<td>Jul-02-11</td>
<td>Jul-02-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.08</td>
<td>0.01</td>
<td>mg/L</td>
<td>Jul-02-11</td>
<td>Jul-02-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td></td>
<td>mg/L</td>
<td>Jul-02-11</td>
<td>Jul-02-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.11</td>
<td>0.05</td>
<td>mg/L</td>
<td>Jun-30-11</td>
<td>Jul-07-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.19</td>
<td>0.05</td>
<td>mg/L</td>
<td>Jul-02-11</td>
<td>Jul-07-11</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>Jun-30-11</td>
<td>Jul-07-11</td>
<td></td>
</tr>
</tbody>
</table>
General Parameters, Continued

Site 3 - 5m (K1F1337-06) Matrix: Water Sampled: Jun-29-11, Continued

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.07</td>
<td>0.01</td>
<td>mg/L</td>
<td>Jul-02-11</td>
<td>Jul-02-11</td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.07</td>
<td>0.01</td>
<td>mg/L</td>
<td>Jul-02-11</td>
<td>Jul-02-11</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td>Jul-02-11</td>
<td>Jul-02-11</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.09</td>
<td>0.05</td>
<td>mg/L</td>
<td>Jun-30-11</td>
<td>Jul-07-11</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.16</td>
<td>0.05</td>
<td>mg/L</td>
<td>Jul-02-11</td>
<td>Jul-07-11</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>Jun-30-11</td>
<td>Jul-07-11</td>
</tr>
</tbody>
</table>

Site 3 - 50m (K1F1337-07) Matrix: Water Sampled: Jun-29-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>0.3</td>
<td>0.1</td>
<td>ug/L</td>
<td>Jun-30-11</td>
<td>Jul-07-11</td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.08</td>
<td>0.01</td>
<td>mg/L</td>
<td>Jul-02-11</td>
<td>Jul-02-11</td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.08</td>
<td>0.01</td>
<td>mg/L</td>
<td>Jul-02-11</td>
<td>Jul-02-11</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td>Jul-02-11</td>
<td>Jul-02-11</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.06</td>
<td>0.05</td>
<td>mg/L</td>
<td>Jun-30-11</td>
<td>Jul-07-11</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.14</td>
<td>0.05</td>
<td>mg/L</td>
<td>Jul-02-11</td>
<td>Jul-07-11</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>0.006</td>
<td>0.005</td>
<td>mg/L</td>
<td>Jun-30-11</td>
<td>Jul-07-11</td>
</tr>
</tbody>
</table>

Site 4 - 5m (K1F1337-08) Matrix: Water Sampled: Jun-29-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>0.4</td>
<td>0.1</td>
<td>ug/L</td>
<td>Jun-30-11</td>
<td>Jul-07-11</td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.07</td>
<td>0.01</td>
<td>mg/L</td>
<td>Jul-02-11</td>
<td>Jul-02-11</td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.07</td>
<td>0.01</td>
<td>mg/L</td>
<td>Jul-02-11</td>
<td>Jul-02-11</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td>Jul-02-11</td>
<td>Jul-02-11</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.10</td>
<td>0.05</td>
<td>mg/L</td>
<td>Jun-30-11</td>
<td>Jul-07-11</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.16</td>
<td>0.05</td>
<td>mg/L</td>
<td>Jul-02-11</td>
<td>Jul-07-11</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>0.014</td>
<td>0.005</td>
<td>mg/L</td>
<td>Jun-30-11</td>
<td>Jul-07-11</td>
</tr>
</tbody>
</table>

Site 4 - 5m QA/QC (K1F1337-09) Matrix: Water Sampled: Jun-29-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.07</td>
<td>0.01</td>
<td>mg/L</td>
<td>Jul-02-11</td>
<td>Jul-02-11</td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.07</td>
<td>0.01</td>
<td>mg/L</td>
<td>Jul-02-11</td>
<td>Jul-02-11</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td>Jul-02-11</td>
<td>Jul-02-11</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.09</td>
<td>0.05</td>
<td>mg/L</td>
<td>Jun-30-11</td>
<td>Jul-07-11</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.17</td>
<td>0.05</td>
<td>mg/L</td>
<td>Jul-02-11</td>
<td>Jul-07-11</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>0.013</td>
<td>0.005</td>
<td>mg/L</td>
<td>Jun-30-11</td>
<td>Jul-07-11</td>
</tr>
</tbody>
</table>

Site 4 - 50m (K1F1337-10) Matrix: Water Sampled: Jun-29-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>0.5</td>
<td>0.1</td>
<td>ug/L</td>
<td>Jun-30-11</td>
<td>Jul-07-11</td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.08</td>
<td>0.01</td>
<td>mg/L</td>
<td>Jul-02-11</td>
<td>Jul-02-11</td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.08</td>
<td>0.01</td>
<td>mg/L</td>
<td>Jul-02-11</td>
<td>Jul-02-11</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td>Jul-02-11</td>
<td>Jul-02-11</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.07</td>
<td>0.05</td>
<td>mg/L</td>
<td>Jun-30-11</td>
<td>Jul-07-11</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.15</td>
<td>0.05</td>
<td>mg/L</td>
<td>Jul-02-11</td>
<td>Jul-07-11</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>0.007</td>
<td>0.005</td>
<td>mg/L</td>
<td>Jun-30-11</td>
<td>Jul-07-11</td>
</tr>
</tbody>
</table>

Site 1 - 5m QA/QC (K1F1337-11) Matrix: Water Sampled: Jun-29-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>1.0</td>
<td>0.1</td>
<td>ug/L</td>
<td>Jun-30-11</td>
<td>Jul-07-11</td>
</tr>
<tr>
<td>Analysis Description</td>
<td>Method Reference</td>
<td>Location</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-A</td>
<td>APHA 10200H</td>
<td>KEL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrate by IC</td>
<td>APHA 4110 B</td>
<td>KEL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrite by IC</td>
<td>APHA 4110 B</td>
<td>KEL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Nitrogen (TKN + NO3-N+NO2-N)</td>
<td>Calc</td>
<td>KEL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>EPA 351.2</td>
<td>KEL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total (persulfate)</td>
<td>APHA 4500P:B.5/E</td>
<td>KEL</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
QUALITY CONTROL DATA

The following section reports quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with quality control samples that ensure your data is of the highest quality. Common QC types include:

- **Method Blank (Blk):** Laboratory reagent water is carried through sample preparation and analysis steps. Method Blanks indicate that results are free from contamination, i.e. not biased high from sources such as the sample container or the laboratory environment.

- **Duplicate (Dup):** Preparation and analysis of a replicate aliquot of a sample. Duplicates provide a measure of the analytical method's precision, i.e. how reproducible a result is. Duplicates are only reported if they are associated with your sample data.

- **Blank Spike (BS):** A known amount of standard is carried through sample preparation and analysis steps. Blank Spikes, also known as laboratory control samples (LCS), are prepared from a different source of standard than used for the calibration. They ensure that the calibration is acceptable (i.e. not biased high or low) and also provide a measure of the analytical method's accuracy (i.e. closeness of the result to a target value).

- **Standard Reference Material (SRM):** A material of similar matrix to the samples, externally certified for the parameter(s) listed. Standard Reference Materials ensure that the preparation steps in the method are adequate to achieve acceptable recoveries of the parameter(s) tested for.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Reporting Limit</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% REC Limits</th>
<th>% RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Parameters, Batch K102658</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (K102658-BLK1)</td>
<td>Prepared: Jun-30-11, Analyzed: Jul-07-11</td>
<td>Chlorophyll-a</td>
<td>< 0.1</td>
<td>0.1</td>
<td>ug/L</td>
<td></td>
</tr>
<tr>
<td>General Parameters, Batch K102669</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (K102669-BLK1)</td>
<td>Prepared: Jul-01-11, Analyzed: Jul-07-11</td>
<td>Nitrogen, Total Kjeldahl</td>
<td>< 0.05</td>
<td>0.05</td>
<td>mg/L</td>
<td></td>
</tr>
<tr>
<td>Blank (K102669-BLK2)</td>
<td>Prepared: Jul-01-11, Analyzed: Jul-07-11</td>
<td>Nitrogen, Total Kjeldahl</td>
<td>< 0.05</td>
<td>0.05</td>
<td>mg/L</td>
<td></td>
</tr>
<tr>
<td>Blank (K102669-BLK3)</td>
<td>Prepared: Jul-01-11, Analyzed: Jul-07-11</td>
<td>Nitrogen, Total Kjeldahl</td>
<td>< 0.05</td>
<td>0.05</td>
<td>mg/L</td>
<td></td>
</tr>
<tr>
<td>LCS (K102669-BS1)</td>
<td>Prepared: Jul-01-11, Analyzed: Jul-07-11</td>
<td>Nitrogen, Total Kjeldahl</td>
<td>10.1</td>
<td>0.50</td>
<td>mg/L</td>
<td>10.0</td>
</tr>
<tr>
<td>LCS (K102669-BS2)</td>
<td>Prepared: Jul-01-11, Analyzed: Jul-07-11</td>
<td>Nitrogen, Total Kjeldahl</td>
<td>10.2</td>
<td>0.50</td>
<td>mg/L</td>
<td>10.0</td>
</tr>
<tr>
<td>LCS (K102669-BS3)</td>
<td>Prepared: Jul-01-11, Analyzed: Jul-07-11</td>
<td>Nitrogen, Total Kjeldahl</td>
<td>10.6</td>
<td>0.50</td>
<td>mg/L</td>
<td>10.0</td>
</tr>
<tr>
<td>Duplicate (K102669-DUP2)</td>
<td>Source: K1F1337-02</td>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.09</td>
<td>0.05</td>
<td>mg/L</td>
<td>0.09</td>
</tr>
<tr>
<td>Duplicate (K102669-DUP3)</td>
<td>Source: K1F1337-09</td>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.09</td>
<td>0.05</td>
<td>mg/L</td>
<td>0.09</td>
</tr>
<tr>
<td>General Parameters, Batch K102673</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (K102673-BLK1)</td>
<td>Prepared: Jul-02-11, Analyzed: Jul-02-11</td>
<td>Nitrogen, Nitrate as N</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td></td>
</tr>
<tr>
<td>Blank (K102673-BLK2)</td>
<td>Prepared: Jul-02-11, Analyzed: Jul-02-11</td>
<td>Nitrogen, Nitrate as N</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td></td>
</tr>
</tbody>
</table>
QUALITY CONTROL DATA

CLIENT
Galena Environmental Ltd.

PROJECT
Slocan Lake Stewartship Society

WORK ORDER #
K1F1337

REPORTED
Jul-07-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Reporting Result</th>
<th>Spike Limit</th>
<th>Units</th>
<th>Source Result</th>
<th>% REC</th>
<th>Limits % RPD</th>
<th>Limit</th>
<th>Notes</th>
</tr>
</thead>
</table>

General Parameters, Batch K102673, Continued

Blank (K102673-BLK3)
Prepared: Jul-02-11, Analyzed: Jul-02-11

- Nitrogen, Nitrate as N: < 0.01 mg/L
- Nitrogen, Nitrite as N: < 0.01 mg/L

Blank (K102673-BLK4)
Prepared: Jul-02-11, Analyzed: Jul-02-11

- Nitrogen, Nitrate as N: < 0.01 mg/L
- Nitrogen, Nitrite as N: < 0.01 mg/L

Blank (K102673-BLK5)
Prepared: Jul-02-11, Analyzed: Jul-02-11

- Nitrogen, Nitrate as N: < 0.01 mg/L
- Nitrogen, Nitrite as N: < 0.01 mg/L

Blank (K102673-BLK6)
Prepared: Jul-02-11, Analyzed: Jul-02-11

- Nitrogen, Nitrate as N: < 0.01 mg/L
- Nitrogen, Nitrite as N: < 0.01 mg/L

Blank (K102673-BLK7)
Prepared: Jul-02-11, Analyzed: Jul-02-11

- Nitrogen, Nitrate as N: < 0.01 mg/L
- Nitrogen, Nitrite as N: < 0.01 mg/L

LCS (K102673-BS1)
Prepared: Jul-02-11, Analyzed: Jul-02-11

- Nitrogen, Nitrate as N: 4.20 mg/L
- Nitrogen, Nitrite as N: 4.15 mg/L

LCS (K102673-BS2)
Prepared: Jul-02-11, Analyzed: Jul-02-11

- Nitrogen, Nitrate as N: 4.23 mg/L
- Nitrogen, Nitrite as N: 4.16 mg/L

LCS (K102673-BS3)
Prepared: Jul-02-11, Analyzed: Jul-02-11

- Nitrogen, Nitrate as N: 4.26 mg/L
- Nitrogen, Nitrite as N: 4.13 mg/L

LCS (K102673-BS4)
Prepared: Jul-02-11, Analyzed: Jul-02-11

- Nitrogen, Nitrate as N: 4.19 mg/L
- Nitrogen, Nitrite as N: 3.97 mg/L

LCS (K102673-BS5)
Prepared: Jul-02-11, Analyzed: Jul-02-11

- Nitrogen, Nitrate as N: 4.26 mg/L
- Nitrogen, Nitrite as N: 4.17 mg/L

LCS (K102673-BS6)
Prepared: Jul-02-11, Analyzed: Jul-02-11

- Nitrogen, Nitrate as N: 4.30 mg/L
- Nitrogen, Nitrite as N: 4.20 mg/L

LCS (K102673-BS7)
Prepared: Jul-02-11, Analyzed: Jul-02-11

- Nitrogen, Nitrate as N: 4.22 mg/L
- Nitrogen, Nitrite as N: 4.11 mg/L

Duplicate (K102673-DUP6)
Source: K1F1337-09
Prepared: Jul-02-11, Analyzed: Jul-02-11

- Nitrogen, Nitrate as N: 0.071 mg/L
- Nitrogen, Nitrite as N: < 0.01 mg/L

General Parameters, Batch K102690

Blank (K102690-BLK1)
Prepared: Jul-04-11, Analyzed: Jul-07-11

- Phosphorus, Total: < 0.005 mg/L

Blank (K102690-BLK2)
Prepared: Jul-04-11, Analyzed: Jul-07-11

- Phosphorus, Total: < 0.005 mg/L
QUALITY CONTROL DATA

CLIENT
Galena Environmental Ltd.

PROJECT
Slocan Lake Stewardship Society

WORK ORDER #
K1F1337

REPORTED
Jul-07-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Spike Level</th>
<th>Source</th>
<th>% REC</th>
<th>% RPD</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCS (K102690-BS1)</td>
<td>Prepared: Jul-04-11, Analyzed: Jul-07-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>0.412</td>
<td>mg/L</td>
<td>0.500</td>
<td></td>
<td>82</td>
<td>75-116</td>
<td></td>
</tr>
<tr>
<td>LCS (K102690-BS2)</td>
<td>Prepared: Jul-04-11, Analyzed: Jul-07-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>0.504</td>
<td>mg/L</td>
<td>0.500</td>
<td></td>
<td>101</td>
<td>75-116</td>
<td></td>
</tr>
<tr>
<td>Duplicate (K102690-DUP2)</td>
<td>Source: K1F1337-07</td>
<td>Prepared: Jul-04-11, Analyzed: Jul-07-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>0.007</td>
<td>mg/L</td>
<td>0.006</td>
<td></td>
<td>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CERTIFICATE OF ANALYSIS

CLIENT
Galena Environmental Ltd.
8075 Upper Galena Farm Road- PO Box 37
Silverton BC
VOG 2B0

ATTENTION
Luce Paquin

RECEIVED / TEMP
Aug-04-11 16:45 / 5.0 °C

REPORTED
Aug-11-11

COC #(s)
32546 & 32547

WORK ORDER
K1H0215

PROJECT
Slocan Lake Stewartship Society

General Comments:

Methods not described in these publications are conducted according to procedures accepted by appropriate regulatory agencies, and/or are done in accordance with recognized professional standards using accepted testing methodologies and quality control efforts except where otherwise agreed to by the client.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued unless otherwise agreed to in writing.

- All solids results are reported on a dry weight basis unless otherwise noted
- Units: mg/kg = milligrams per kilogram, equivalent to parts per million (ppm)
 mg/L = milligrams per litre, equivalent to parts per million (ppm)
 ug/L = micrograms per litre, equivalent to parts per billion (ppb)
 ug/g = micrograms per gram, equivalent to parts per million (ppm)
 ug/m3 = micrograms per cubic meter of air
- "RDL" Reported detection limit
- "<" Less than reported detection limit
- "AO" Aesthetic objective
- "MAC" Maximum acceptable concentration (health-related guideline)
- "LAB" RMD = Richmond location, KEL = Kelowna location, EDM = Edmonton location, SUB = Subcontracted

Please contact CARO if more information is needed or to provide feedback on our services.

CARO Analytical Services

Final Review Per: Sarah Speier, B.Sc. For Jennifer Shanko, AScT
Administration Coordinator
General Parameters

Site 1 - 5m (K1H0215-01) Matrix: Water Sampled: Jul-28-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>0.5</td>
<td>0.1 ug/L</td>
<td>Aug-04-11</td>
<td>Aug-04-11</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.05</td>
<td>0.01 mg/L</td>
<td>Aug-05-11</td>
<td>Aug-05-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.05</td>
<td>0.01 mg/L</td>
<td>Aug-05-11</td>
<td>Aug-05-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td>0.01 mg/L</td>
<td>Aug-05-11</td>
<td>Aug-05-11</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.09</td>
<td>0.05 mg/L</td>
<td>Aug-11-11</td>
<td>Aug-11-11</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.14</td>
<td>0.05 mg/L</td>
<td>Aug-11-11</td>
<td>Aug-11-11</td>
<td>HT</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>< 0.005</td>
<td>0.005 mg/L</td>
<td>Aug-11-11</td>
<td>Aug-11-11</td>
<td>HT</td>
</tr>
</tbody>
</table>

Site 1 - 50m (K1H0215-02) Matrix: Water Sampled: Jul-28-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>0.9</td>
<td>0.1 ug/L</td>
<td>Aug-04-11</td>
<td>Aug-04-11</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.09</td>
<td>0.01 mg/L</td>
<td>Aug-05-11</td>
<td>Aug-05-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.09</td>
<td>0.01 mg/L</td>
<td>Aug-05-11</td>
<td>Aug-05-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td>0.01 mg/L</td>
<td>Aug-05-11</td>
<td>Aug-05-11</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.07</td>
<td>0.05 mg/L</td>
<td>Aug-11-11</td>
<td>Aug-11-11</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.16</td>
<td>0.05 mg/L</td>
<td>Aug-11-11</td>
<td>Aug-11-11</td>
<td>HT</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>< 0.005</td>
<td>0.005 mg/L</td>
<td>Aug-11-11</td>
<td>Aug-11-11</td>
<td>HT</td>
</tr>
</tbody>
</table>

Site 2 - 5m (K1H0215-03) Matrix: Water Sampled: Jul-28-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>0.4</td>
<td>0.1 ug/L</td>
<td>Aug-04-11</td>
<td>Aug-04-11</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.05</td>
<td>0.01 mg/L</td>
<td>Aug-05-11</td>
<td>Aug-05-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.05</td>
<td>0.01 mg/L</td>
<td>Aug-05-11</td>
<td>Aug-05-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td>0.01 mg/L</td>
<td>Aug-05-11</td>
<td>Aug-05-11</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.14</td>
<td>0.05 mg/L</td>
<td>Aug-11-11</td>
<td>Aug-11-11</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.18</td>
<td>0.05 mg/L</td>
<td>Aug-11-11</td>
<td>Aug-11-11</td>
<td>HT</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>< 0.005</td>
<td>0.005 mg/L</td>
<td>Aug-11-11</td>
<td>Aug-11-11</td>
<td>HT</td>
</tr>
</tbody>
</table>

Site 2 - 50m (K1H0215-04) Matrix: Water Sampled: Jul-28-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>0.5</td>
<td>0.1 ug/L</td>
<td>Aug-04-11</td>
<td>Aug-04-11</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.08</td>
<td>0.01 mg/L</td>
<td>Aug-05-11</td>
<td>Aug-05-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.08</td>
<td>0.01 mg/L</td>
<td>Aug-05-11</td>
<td>Aug-05-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td>0.01 mg/L</td>
<td>Aug-05-11</td>
<td>Aug-05-11</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>< 0.05</td>
<td>0.05 mg/L</td>
<td>Aug-11-11</td>
<td>Aug-11-11</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.08</td>
<td>0.05 mg/L</td>
<td>Aug-11-11</td>
<td>Aug-11-11</td>
<td>HT</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>< 0.005</td>
<td>0.005 mg/L</td>
<td>Aug-11-11</td>
<td>Aug-11-11</td>
<td>HT</td>
</tr>
</tbody>
</table>

Site 3 - 5m (K1H0215-05) Matrix: Water Sampled: Jul-28-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>0.6</td>
<td>0.1 ug/L</td>
<td>Aug-04-11</td>
<td>Aug-04-11</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.05</td>
<td>0.01 mg/L</td>
<td>Aug-05-11</td>
<td>Aug-05-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.05</td>
<td>0.01 mg/L</td>
<td>Aug-05-11</td>
<td>Aug-05-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td>0.01 mg/L</td>
<td>Aug-05-11</td>
<td>Aug-05-11</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.06</td>
<td>0.05 mg/L</td>
<td>Aug-11-11</td>
<td>Aug-11-11</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.11</td>
<td>0.05 mg/L</td>
<td>Aug-11-11</td>
<td>Aug-11-11</td>
<td>HT</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>< 0.005</td>
<td>0.005 mg/L</td>
<td>Aug-11-11</td>
<td>Aug-11-11</td>
<td>HT</td>
</tr>
</tbody>
</table>

Site 3 - 50m (K1H0215-06) Matrix: Water Sampled: Jul-28-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>0.2</td>
<td>0.1 ug/L</td>
<td>Aug-04-11</td>
<td>Aug-04-11</td>
<td>HT</td>
</tr>
</tbody>
</table>
General Parameters, Continued

Site 3 - 50m (K1H0215-06) Matrix: Water Sampled: Jul-28-11, Continued

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.08</td>
<td>0.01</td>
<td>mg/L</td>
<td>Aug-05-11</td>
<td>Aug-05-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.08</td>
<td>0.01</td>
<td>mg/L</td>
<td>Aug-05-11</td>
<td>Aug-05-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td>Aug-05-11</td>
<td>Aug-05-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.11</td>
<td>0.05</td>
<td>mg/L</td>
<td>Aug-04-11</td>
<td>Aug-11-11</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.19</td>
<td>0.05</td>
<td>mg/L</td>
<td>Aug-05-11</td>
<td>Aug-11-11</td>
<td>HT</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>Aug-04-11</td>
<td>Aug-11-11</td>
<td>HT</td>
</tr>
</tbody>
</table>

Site 4 - 5m (K1H0215-07) Matrix: Water Sampled: Jul-28-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>0.9</td>
<td>0.1</td>
<td>ug/L</td>
<td>Aug-04-11</td>
<td>Aug-04-11</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.05</td>
<td>0.01</td>
<td>mg/L</td>
<td>Aug-05-11</td>
<td>Aug-05-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.05</td>
<td>0.01</td>
<td>mg/L</td>
<td>Aug-05-11</td>
<td>Aug-05-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td>Aug-05-11</td>
<td>Aug-05-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.13</td>
<td>0.05</td>
<td>mg/L</td>
<td>Aug-04-11</td>
<td>Aug-11-11</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.18</td>
<td>0.05</td>
<td>mg/L</td>
<td>Aug-05-11</td>
<td>Aug-11-11</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>Aug-04-11</td>
<td>Aug-11-11</td>
<td>HT</td>
</tr>
</tbody>
</table>

Site 4 - 50m (K1H0215-08) Matrix: Water Sampled: Jul-28-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>0.3</td>
<td>0.1</td>
<td>ug/L</td>
<td>Aug-04-11</td>
<td>Aug-04-11</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.08</td>
<td>0.01</td>
<td>mg/L</td>
<td>Aug-05-11</td>
<td>Aug-05-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.08</td>
<td>0.01</td>
<td>mg/L</td>
<td>Aug-05-11</td>
<td>Aug-05-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td>Aug-05-11</td>
<td>Aug-05-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.12</td>
<td>0.05</td>
<td>mg/L</td>
<td>Aug-04-11</td>
<td>Aug-11-11</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.20</td>
<td>0.05</td>
<td>mg/L</td>
<td>Aug-05-11</td>
<td>Aug-11-11</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>Aug-04-11</td>
<td>Aug-11-11</td>
<td>HT</td>
</tr>
</tbody>
</table>

Sample Qualifiers:

HT Parameter(s) analyzed outside of the EPA/BCMOE/APHA recommended holding time.
ANALYSIS / REPORT INFORMATION

CLIENT
Galena Environmental Ltd.

PROJECT
Slocan Lake Stewardship Society

WORK ORDER #
K1H0215

REPORTED
Aug-11-11

<table>
<thead>
<tr>
<th>Analysis Description</th>
<th>Method Reference</th>
<th>LAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-A</td>
<td>APHA 10200H</td>
<td>KEL</td>
</tr>
<tr>
<td>Nitrate by IC</td>
<td>APHA 4110 B</td>
<td>KEL</td>
</tr>
<tr>
<td>Nitrite by IC</td>
<td>APHA 4110 B</td>
<td>KEL</td>
</tr>
<tr>
<td>Total Nitrogen (TKN + NO3-N+NO2-N)</td>
<td>Calc</td>
<td>KEL</td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>EPA 351.2</td>
<td>KEL</td>
</tr>
<tr>
<td>Phosphorus, Total (persulfate)</td>
<td>APHA 4500P:B.5/E</td>
<td>KEL</td>
</tr>
</tbody>
</table>
QUALITY CONTROL DATA

The following section reports quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with quality control samples that ensure your data is of the highest quality. Common QC types include:

- Method Blank (Blk): Laboratory reagent water is carried through sample preparation and analysis steps. Method Blanks indicate that results are free from contamination, i.e. not biased high from sources such as the sample container or the laboratory environment.

- Duplicate (Dup): Preparation and analysis of a replicate aliquot of a sample. Duplicates provide a measure of the analytical method's precision, i.e. how reproducible a result is. Duplicates are only reported if they are associated with your sample data.

- Blank Spike (BS): A known amount of standard is carried through sample preparation and analysis steps. Blank Spikes, also known as laboratory control samples (LCS), are prepared from a different source of standard than used for the calibration. They ensure that the calibration is acceptable (i.e. not biased high or low) and also provide a measure of the analytical method's accuracy (i.e. closeness of the result to a target value).

- Standard Reference Material (SRM): A material of similar matrix to the samples, externally certified for the parameter(s) listed. Standard Reference Materials ensure that the preparation steps in the method are adequate to achieve acceptable recoveries of the parameter(s) tested for.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>% REC</th>
<th>% RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Parameters, Batch K103187</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (K103187-BLK1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>< 0.1</td>
<td>0.1</td>
<td>ug/L</td>
<td></td>
</tr>
<tr>
<td>General Parameters, Batch K103225</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (K103225-BLK1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td></td>
</tr>
<tr>
<td>Nitrite as N</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td></td>
</tr>
<tr>
<td>Prepared: Jun-08-11, Analyzed: Jun-08-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (K103225-BLK2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td></td>
</tr>
<tr>
<td>Nitrite as N</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td></td>
</tr>
<tr>
<td>Prepared: Jun-08-11, Analyzed: Jun-08-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (K103225-BLK3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td></td>
</tr>
<tr>
<td>Nitrite as N</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td></td>
</tr>
<tr>
<td>Prepared: Jun-08-11, Analyzed: Jun-08-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS (K103225-BS1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>4.34</td>
<td>0.01</td>
<td>mg/L</td>
<td></td>
</tr>
<tr>
<td>Nitrite as N</td>
<td>3.96</td>
<td>0.01</td>
<td>mg/L</td>
<td></td>
</tr>
<tr>
<td>Prepared: Jun-08-11, Analyzed: Jun-08-11</td>
<td></td>
<td>109</td>
<td>85-115</td>
<td></td>
</tr>
<tr>
<td>LCS (K103225-BS2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>4.36</td>
<td>0.01</td>
<td>mg/L</td>
<td></td>
</tr>
<tr>
<td>Nitrite as N</td>
<td>4.00</td>
<td>0.01</td>
<td>mg/L</td>
<td></td>
</tr>
<tr>
<td>Prepared: Jun-08-11, Analyzed: Jun-08-11</td>
<td></td>
<td>109</td>
<td>85-115</td>
<td></td>
</tr>
<tr>
<td>LCS (K103225-BS3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>4.36</td>
<td>0.01</td>
<td>mg/L</td>
<td></td>
</tr>
<tr>
<td>Nitrite as N</td>
<td>4.01</td>
<td>0.01</td>
<td>mg/L</td>
<td></td>
</tr>
<tr>
<td>Prepared: Jun-08-11, Analyzed: Jun-08-11</td>
<td></td>
<td>109</td>
<td>85-115</td>
<td></td>
</tr>
<tr>
<td>LCS (K103225-BS4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>4.30</td>
<td>0.01</td>
<td>mg/L</td>
<td></td>
</tr>
<tr>
<td>Nitrite as N</td>
<td>3.98</td>
<td>0.01</td>
<td>mg/L</td>
<td></td>
</tr>
<tr>
<td>Prepared: Jul-08-11, Analyzed: Jul-08-11</td>
<td></td>
<td>108</td>
<td>85-115</td>
<td></td>
</tr>
<tr>
<td>Duplicate (K103225-DUP2)</td>
<td>Source: K1H0215-07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.049</td>
<td>0.01</td>
<td>mg/L</td>
<td></td>
</tr>
<tr>
<td>Nitrite as N</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td></td>
</tr>
<tr>
<td>Prepared: Jun-08-11, Analyzed: Jun-08-11</td>
<td></td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General Parameters, Batch K103239
QUALITY CONTROL DATA

CLIENT
Galena Environmental Ltd.

PROJECT
Slocan Lake Stewardship Society

WORK ORDER #
K1H0215

REPORTED
Aug-11-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Spike Level</th>
<th>Result % REC</th>
<th>% REC Limits</th>
<th>% RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Parameters, Batch K103239, Continued</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (K103239-BLK1)</td>
<td>Prepared: Aug-08-11, Analyzed: Aug-11-11</td>
<td>0.05</td>
<td>mg/L</td>
<td>0.05</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (K103239-BLK2)</td>
<td>Prepared: Aug-08-11, Analyzed: Aug-11-11</td>
<td>0.05</td>
<td>mg/L</td>
<td>0.05</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS (K103239-BS1)</td>
<td>Prepared: Aug-08-11, Analyzed: Aug-11-11</td>
<td>10.1</td>
<td>0.50 mg/L</td>
<td>10.0</td>
<td>101</td>
<td>89-118</td>
<td></td>
</tr>
<tr>
<td>LCS (K103239-BS2)</td>
<td>Prepared: Aug-08-11, Analyzed: Aug-11-11</td>
<td>10.1</td>
<td>0.50 mg/L</td>
<td>10.0</td>
<td>101</td>
<td>89-118</td>
<td></td>
</tr>
<tr>
<td>Duplicate (K103239-DUP1)</td>
<td>Source: K1H0215-01</td>
<td>Prepared: Aug-08-11, Analyzed: Aug-11-11</td>
<td>0.09</td>
<td>0.05 mg/L</td>
<td>0.09</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>

| **General Parameters, Batch K103258** |
Blank (K103258-BLK1)	Prepared: Aug-09-11, Analyzed: Aug-11-11	< 0.005	mg/L	0.005		
LCS (K103258-BS1)	Prepared: Aug-09-11, Analyzed: Aug-11-11	0.502	0.025 mg/L	0.50	100	75-116
Duplicate (K103258-DUP1)	Source: K1H0215-04	Prepared: Aug-09-11, Analyzed: Aug-11-11	< 0.005	0.005 mg/L	< 0.005	20
CERTIFICATE OF ANALYSIS

CLIENT: Galena Environmental Ltd.
8075 Upper Galena Farm Road - PO Box 37
Silverton BC
TEL 1-250-358-2872
V0G 2B0
FAX 1-250-358-2114

ATTENTION: Luce Paquin

RECEIVED / TEMP: Sep-01-11 09:25 / 8.0 °C
REPORTED: Sep-09-11
WORK ORDER: K1I0013
PROJECT: Slocan Lake Stewartship Society
COC #(s): 32546

General Comments:

Methods not described in these publications are conducted according to procedures accepted by appropriate regulatory agencies, and/or are done in accordance with recognized professional standards using accepted testing methodologies and quality control efforts except where otherwise agreed to by the client.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued unless otherwise agreed to in writing.

- All solids results are reported on a dry weight basis unless otherwise noted

- Units: mg/kg = milligrams per kilogram, equivalent to parts per million (ppm)
 mg/L = milligrams per litre, equivalent to parts per million (ppm)
 ug/L = micrograms per litre, equivalent to parts per billion (ppb)
 ug/g = micrograms per gram, equivalent to parts per million (ppm)
 ug/m³ = micrograms per cubic meter of air

- "RDL" = Reported detection limit
- "<" = Less than reported detection limit
- "AO" = Aesthetic objective
- "MAC" = Maximum acceptable concentration (health-related guideline)
- "LAB" = RMD = Richmond location, KEL = Kelowna location, EDM = Edmonton location, SUB = Subcontracted

Please contact CARO if more information is needed or to provide feedback on our services.

CARO Analytical Services

Final Review Per: Jennifer Shanko, AScT
Administration Coordinator

CARO Analytical Services

#120 12791 Clarke Place #102 3677 Highway 97N #9523 42 Avenue
Richmond, BC V6V 2H9 Kelowna, BC V1X 5C3 Edmonton, AB T6E 5R2
Tel: 604-279-1499 Fax: 604-279-1599 Tel: 250-765-9646 Fax: 250-765-3893 Tel: 780-628-3737
www.caro.ca
SAMPLE DATA

General Parameters

<table>
<thead>
<tr>
<th>Site</th>
<th>Matrix: Water</th>
<th>Sampled: Aug-30-11</th>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site 1 - 5m</td>
<td>(K1I0013-01)</td>
<td></td>
<td>Chlorophyll-a</td>
<td>1.3</td>
<td>0.1</td>
<td>ug/L</td>
<td>Aug-31-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hardness, Total (Total as CaCO3)</td>
<td>35.6</td>
<td>1.25</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.029</td>
<td>0.010</td>
<td>mg/L</td>
<td>Sep-02-11</td>
<td>Sep-02-11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nitrogen, Nitrate as N</td>
<td>0.029</td>
<td>0.010</td>
<td>mg/L</td>
<td>Sep-02-11</td>
<td>Sep-02-11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td>< 0.01</td>
<td>mg/L</td>
<td>Sep-02-11</td>
<td>Sep-02-11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.08</td>
<td>0.05</td>
<td>mg/L</td>
<td>Sep-02-11</td>
<td>Sep-08-11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nitrogen, Total</td>
<td>< 0.05</td>
<td>< 0.05</td>
<td>mg/L</td>
<td>Sep-02-11</td>
<td>Sep-08-11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phosphorus, Total</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>Sep-01-11</td>
<td>Sep-08-11</td>
<td></td>
</tr>
<tr>
<td>Site 1 - 50m</td>
<td>(K1I0013-02)</td>
<td></td>
<td>Chlorophyll-a</td>
<td>1.2</td>
<td>0.1</td>
<td>ug/L</td>
<td>Aug-31-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hardness, Total (Total as CaCO3)</td>
<td>44.4</td>
<td>1.25</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.096</td>
<td>0.010</td>
<td>mg/L</td>
<td>Sep-02-11</td>
<td>Sep-02-11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nitrogen, Nitrate as N</td>
<td>0.096</td>
<td>0.010</td>
<td>mg/L</td>
<td>Sep-02-11</td>
<td>Sep-02-11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td>< 0.01</td>
<td>mg/L</td>
<td>Sep-02-11</td>
<td>Sep-02-11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.177</td>
<td>0.05</td>
<td>mg/L</td>
<td>Sep-02-11</td>
<td>Sep-08-11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nitrogen, Total</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>Sep-01-11</td>
<td>Sep-08-11</td>
<td></td>
</tr>
<tr>
<td>Site 2 - 5m</td>
<td>(K1I0013-03)</td>
<td></td>
<td>Chlorophyll-a</td>
<td>1.4</td>
<td>0.1</td>
<td>ug/L</td>
<td>Aug-31-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hardness, Total (Total as CaCO3)</td>
<td>37.4</td>
<td>1.25</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.031</td>
<td>0.010</td>
<td>mg/L</td>
<td>Sep-02-11</td>
<td>Sep-02-11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nitrogen, Nitrate as N</td>
<td>0.031</td>
<td>0.010</td>
<td>mg/L</td>
<td>Sep-02-11</td>
<td>Sep-02-11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td>< 0.01</td>
<td>mg/L</td>
<td>Sep-02-11</td>
<td>Sep-02-11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.092</td>
<td>0.05</td>
<td>mg/L</td>
<td>Sep-02-11</td>
<td>Sep-08-11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nitrogen, Total</td>
<td>< 0.05</td>
<td>< 0.05</td>
<td>mg/L</td>
<td>Sep-02-11</td>
<td>Sep-08-11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phosphorus, Total</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>Sep-01-11</td>
<td>Sep-08-11</td>
<td></td>
</tr>
<tr>
<td>Site 2 - 50m</td>
<td>(K1I0013-04)</td>
<td></td>
<td>Chlorophyll-a</td>
<td>1.3</td>
<td>0.1</td>
<td>ug/L</td>
<td>Aug-31-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hardness, Total (Total as CaCO3)</td>
<td>50.4</td>
<td>1.25</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.092</td>
<td>0.010</td>
<td>mg/L</td>
<td>Sep-02-11</td>
<td>Sep-02-11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nitrogen, Nitrate as N</td>
<td>0.092</td>
<td>0.010</td>
<td>mg/L</td>
<td>Sep-02-11</td>
<td>Sep-02-11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td>< 0.01</td>
<td>mg/L</td>
<td>Sep-02-11</td>
<td>Sep-02-11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.092</td>
<td>0.05</td>
<td>mg/L</td>
<td>Sep-02-11</td>
<td>Sep-08-11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nitrogen, Total</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>Sep-01-11</td>
<td>Sep-08-11</td>
<td></td>
</tr>
</tbody>
</table>

Total Recoverable Metals by ICPMS

<table>
<thead>
<tr>
<th>Site</th>
<th>Matrix: Water</th>
<th>Sampled: Aug-30-11</th>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site 1 - 5m</td>
<td>(K1I0013-01)</td>
<td></td>
<td>Aluminum</td>
<td>0.020</td>
<td>0.005</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Antimony</td>
<td>0.0001</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Arsenic</td>
<td>< 0.005</td>
<td>< 0.005</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Barium</td>
<td>0.019</td>
<td>0.005</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
</tbody>
</table>
Total Recoverable Metals by ICPMS, Continued

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site 1 - 5m (K1I0013-01) Matrix: Water</td>
<td>Sampled: Aug-30-11, Continued</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beryllium</td>
<td>< 0.0001</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Bismuth</td>
<td>< 0.0001</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Boron</td>
<td>0.006</td>
<td>0.004</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.00011</td>
<td>0.00001</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>11.4</td>
<td>0.5</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>< 0.0005</td>
<td>0.0005</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Cobalt</td>
<td>< 0.0005</td>
<td>0.0005</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>0.0006</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>0.02</td>
<td>0.01</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>0.0002</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Lithium</td>
<td>0.0007</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>1.74</td>
<td>0.01</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>0.0012</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>< 0.00002</td>
<td>0.00002</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Molybdenum</td>
<td>0.0009</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>0.0004</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Phosphorus</td>
<td>< 0.02</td>
<td>0.02</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>0.46</td>
<td>0.02</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Selenium</td>
<td>< 0.0005</td>
<td>0.0005</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Silicon</td>
<td>2.6</td>
<td>0.5</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td>< 0.00005</td>
<td>0.00005</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>0.99</td>
<td>0.02</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Strontium</td>
<td>0.165</td>
<td>0.001</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Tellurium</td>
<td>< 0.0002</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Thallium</td>
<td>< 0.00002</td>
<td>0.00002</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Thorium</td>
<td>< 0.0001</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Tin</td>
<td>< 0.0002</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Titanium</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Uranium</td>
<td>0.00029</td>
<td>0.00002</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Vanadium</td>
<td>< 0.001</td>
<td>0.001</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>0.018</td>
<td>0.004</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Zirconium</td>
<td>< 0.0001</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site 1 - 50m (K1I0013-02) Matrix: Water</th>
<th>Sampled: Aug-30-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>0.007</td>
</tr>
<tr>
<td>Antimony</td>
<td>0.0001</td>
</tr>
<tr>
<td>Arsenic</td>
<td>< 0.0005</td>
</tr>
<tr>
<td>Barium</td>
<td>0.025</td>
</tr>
<tr>
<td>Beryllium</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Bismuth</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Boron</td>
<td>0.005</td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.00012</td>
</tr>
<tr>
<td>Calcium</td>
<td>14.1</td>
</tr>
<tr>
<td>Chromium</td>
<td>< 0.0005</td>
</tr>
<tr>
<td>Cobalt</td>
<td>< 0.00005</td>
</tr>
<tr>
<td>Copper</td>
<td>0.0002</td>
</tr>
</tbody>
</table>
Total Recoverable Metals by ICPMS, Continued

Site 1 - 50m (K1I0013-02) Matrix: Water Sampled: Aug-30-11, continued

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>0.0007</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Lithium</td>
<td>0.0010</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>2.22</td>
<td>0.01</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>0.0006</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>0.00005</td>
<td>0.00002</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Molybdenum</td>
<td>0.0010</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>0.0003</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Phosphorus</td>
<td>< 0.02</td>
<td>0.02</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>0.53</td>
<td>0.02</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Selenium</td>
<td>< 0.0005</td>
<td>0.0005</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Silicon</td>
<td>3.0</td>
<td>0.5</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td>< 0.00005</td>
<td>0.00005</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>1.26</td>
<td>0.2</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Strontium</td>
<td>0.215</td>
<td>0.001</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Tellurium</td>
<td>< 0.0002</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Thallium</td>
<td>< 0.0002</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Thorium</td>
<td>< 0.0001</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Tin</td>
<td>< 0.0002</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Titanium</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Uranium</td>
<td>0.00031</td>
<td>0.00002</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Vanadium</td>
<td>< 0.001</td>
<td>0.001</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>0.020</td>
<td>0.004</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Zirconium</td>
<td>< 0.0001</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
</tbody>
</table>

Site 2 - 5m (K1I0013-03) Matrix: Water Sampled: Aug-30-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>0.062</td>
<td>0.005</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>0.0001</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>< 0.0005</td>
<td>0.0005</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td>0.020</td>
<td>0.005</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Beryllium</td>
<td>< 0.0001</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Bismuth</td>
<td>< 0.0001</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Boron</td>
<td>0.004</td>
<td>0.004</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.00013</td>
<td>0.00001</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>12.0</td>
<td>0.5</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>< 0.0005</td>
<td>0.0005</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Cobalt</td>
<td>< 0.00005</td>
<td>0.00005</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>0.0004</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>0.0001</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Lithium</td>
<td>0.0008</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>1.81</td>
<td>0.01</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>0.0013</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>< 0.00002</td>
<td>0.00002</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Molybdenum</td>
<td>0.0009</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>0.0003</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
</tbody>
</table>
Total Recoverable Metals by ICPMS, Continued

Site 2 - 5m (K1I0013-03) Matrix: Water Sampled: Aug-30-11, Continued

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphorus</td>
<td>< 0.02</td>
<td>0.02</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>0.45</td>
<td>0.02</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Selenium</td>
<td>< 0.0005</td>
<td>0.0005</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Silicon</td>
<td>2.6</td>
<td>0.5</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td>< 0.0005</td>
<td>0.0005</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>0.98</td>
<td>0.02</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Strontium</td>
<td>0.174</td>
<td>0.001</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Tellurium</td>
<td>< 0.0002</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Thallium</td>
<td>< 0.0002</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Thorium</td>
<td>< 0.0001</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Tin</td>
<td>< 0.0002</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Titanium</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Uranium</td>
<td>0.00029</td>
<td>0.00029</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Vanadium</td>
<td>< 0.001</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>0.018</td>
<td>0.004</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Zirconium</td>
<td>< 0.0001</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
</tbody>
</table>

Site 2 - 50m (K1I0013-04) Matrix: Water Sampled: Aug-30-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>0.011</td>
<td>0.005</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>0.0001</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>< 0.0005</td>
<td>0.0005</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td>0.026</td>
<td>0.005</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Beryllium</td>
<td>< 0.0001</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Bismuth</td>
<td>< 0.0001</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Boron</td>
<td>0.005</td>
<td>0.004</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.00013</td>
<td>0.00013</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>16.4</td>
<td>0.5</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>< 0.0005</td>
<td>0.0005</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Cobalt</td>
<td>< 0.00005</td>
<td>0.00005</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>0.0003</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>0.0002</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Lithium</td>
<td>0.0011</td>
<td>0.001</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>2.30</td>
<td>0.1</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>0.0009</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>< 0.00002</td>
<td>0.00002</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Molybdenum</td>
<td>0.0010</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>0.0004</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Phosphorus</td>
<td>< 0.2</td>
<td>0.02</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>0.55</td>
<td>0.02</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Selenium</td>
<td>< 0.0005</td>
<td>0.0005</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Silicon</td>
<td>3.1</td>
<td>0.5</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td>< 0.00005</td>
<td>0.00005</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>1.30</td>
<td>0.02</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Strontium</td>
<td>0.225</td>
<td>0.001</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
<tr>
<td>Tellurium</td>
<td>< 0.0002</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
</tr>
</tbody>
</table>
SAMPLE DATA

CLIENT
Galena Environmental Ltd.

PROJECT
Slocan Lake Stewartship Society

WORK ORDER #
K1I0013

REPORTED
Sep-09-11

Analyte Result RDL Units Prepared Analyzed Notes

Total Recoverable Metals by ICPMS, Continued

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thallium</td>
<td>< 0.00002</td>
<td>0.00002 mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thorium</td>
<td>< 0.0001</td>
<td>0.0001 mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin</td>
<td>< 0.0002</td>
<td>0.0002 mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Titanium</td>
<td>< 0.005</td>
<td>0.005 mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uranium</td>
<td>0.00036</td>
<td>0.00002 mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanadium</td>
<td>< 0.001</td>
<td>0.001 mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>0.021</td>
<td>0.004 mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zirconium</td>
<td>< 0.0001</td>
<td>0.0001 mg/L</td>
<td>Sep-06-11</td>
<td>Sep-07-11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysis Description</td>
<td>Method Reference(s) (* = modified from)</td>
<td>LAB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-A</td>
<td>N/A</td>
<td>KEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrate by IC</td>
<td>IC</td>
<td>KEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrite by IC</td>
<td>IC</td>
<td>KEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Nitrogen (TKN + NO3-N+NO2-N)</td>
<td>Calc</td>
<td>KEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>N/A</td>
<td>KEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total (persulfate)</td>
<td>N/A</td>
<td>KEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Recoverable Metals by ICPMS</td>
<td>EPA 200.2 *</td>
<td>RMD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The following section reports quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with quality control samples that ensure your data is of the highest quality. Common QC types include:

- **Method Blank (Blk):** Laboratory reagent water is carried through sample preparation and analysis steps. Method Blanks indicate that results are free from contamination, i.e. not biased high from sources such as the sample container or the laboratory environment.

- **Duplicate (Dup):** Preparation and analysis of a replicate aliquot of a sample. Duplicates provide a measure of the analytical method's precision, i.e. how reproducible a result is. Duplicates are only reported if they are associated with your sample data.

- **Blank Spike (BS):** A known amount of standard is carried through sample preparation and analysis steps. Blank Spikes, also known as laboratory control samples (LCS), are prepared from a different source of standard than used for the calibration. They ensure that the calibration is acceptable (i.e. not biased high or low) and also provide a measure of the analytical method's accuracy (i.e. closeness of the result to a target value).

- **Standard Reference Material (SRM):** A material of similar matrix to the samples, externally certified for the parameter(s) listed. Standard Reference Materials ensure that the preparation steps in the method are adequate to achieve acceptable recoveries of the parameter(s) tested for.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

Analyte Results

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Reporting Limit</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>< 0.1</td>
<td>0.1 ug/L</td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>< 0.010</td>
<td>0.010 mg/L</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010 mg/L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Blank (K103668-BLK1)</th>
<th>Prepared: Aug-31-11, Analyzed: Sep-07-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank (K103700-BLK1)</td>
<td>Prepared: Sep-02-11, Analyzed: Sep-02-11</td>
</tr>
<tr>
<td>Blank (K103700-BLK2)</td>
<td>Prepared: Sep-02-11, Analyzed: Sep-02-11</td>
</tr>
<tr>
<td>Blank (K103700-BLK3)</td>
<td>Prepared: Sep-02-11, Analyzed: Sep-03-11</td>
</tr>
<tr>
<td>Blank (K103700-BLK4)</td>
<td>Prepared: Sep-02-11, Analyzed: Sep-03-11</td>
</tr>
<tr>
<td>Blank (K103700-BLK5)</td>
<td>Prepared: Sep-02-11, Analyzed: Sep-03-11</td>
</tr>
<tr>
<td>LCS (K103700-BS1)</td>
<td>Prepared: Sep-02-11, Analyzed: Sep-02-11</td>
</tr>
<tr>
<td>LCS (K103700-BS2)</td>
<td>Prepared: Sep-02-11, Analyzed: Sep-02-11</td>
</tr>
<tr>
<td>LCS (K103700-BS3)</td>
<td>Prepared: Sep-02-11, Analyzed: Sep-03-11</td>
</tr>
<tr>
<td>LCS (K103700-BS4)</td>
<td>Prepared: Sep-02-11, Analyzed: Sep-03-11</td>
</tr>
</tbody>
</table>

CARO Analytical Services
QUALITY CONTROL DATA

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Reporting</th>
<th>Spike</th>
<th>Source</th>
<th>% REC Limits</th>
<th>% RPD Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Result</td>
<td>Level</td>
<td></td>
<td>% REC</td>
<td>% RPD</td>
</tr>
</tbody>
</table>

General Parameters, Batch K103700, Continued

LCS (K103700-BS5)
Prepared: Sep-02-11, Analyzed: Sep-03-11

| Nitrogen, Nitrate as N | 4.35 | 0.010 mg/L | 4.00 | 109 85-115 |
| Nitrogen, Nitrite as N | 4.32 | 0.01 mg/L | 4.00 | 108 85-115 |

Duplicate (K103700-DUP4)
Source: K1I0013-03
Prepared: Sep-02-11, Analyzed: Sep-03-11

| Nitrogen, Nitrate as N | 0.028 | 0.010 mg/L | 0.031 | 15 |
| Nitrogen, Nitrite as N | < 0.01 | < 0.01 mg/L | < 0.01 | 15 |

General Parameters, Batch K103715

Blank (K103715-BLK1)
Prepared: Sep-02-11, Analyzed: Sep-08-11

| Nitrogen, Total Kjeldahl | < 0.05 | 0.05 mg/L |

Blank (K103715-BLK2)
Prepared: Sep-02-11, Analyzed: Sep-08-11

| Nitrogen, Total Kjeldahl | < 0.05 | 0.05 mg/L |

LCS (K103715-BS1)
Prepared: Sep-02-11, Analyzed: Sep-08-11

| Nitrogen, Total Kjeldahl | 9.62 | 0.50 mg/L | 10.0 | 96 89-118 |

LCS (K103715-BS2)
Prepared: Sep-02-11, Analyzed: Sep-08-11

| Nitrogen, Total Kjeldahl | 9.78 | 0.50 mg/L | 10.0 | 98 89-118 |

General Parameters, Batch K103757

Blank (K103757-BLK1)
Prepared: Sep-07-11, Analyzed: Sep-08-11

| Phosphorus, Total | < 0.005 | 0.005 mg/L |

Blank (K103757-BLK2)
Prepared: Sep-07-11, Analyzed: Sep-08-11

| Phosphorus, Total | < 0.005 | 0.005 mg/L |

Blank (K103757-BLK3)
Prepared: Sep-07-11, Analyzed: Sep-08-11

| Phosphorus, Total | < 0.005 | 0.005 mg/L |

LCS (K103757-BS1)
Prepared: Sep-07-11, Analyzed: Sep-08-11

| Phosphorus, Total | 0.484 | 0.025 mg/L | 0.500 | 97 75-116 |

LCS (K103757-BS2)
Prepared: Sep-07-11, Analyzed: Sep-08-11

| Phosphorus, Total | 0.503 | 0.025 mg/L | 0.500 | 101 75-116 |

LCS (K103757-BS3)
Prepared: Sep-07-11, Analyzed: Sep-08-11

| Phosphorus, Total | 0.518 | 0.025 mg/L | 0.500 | 104 75-116 |

Total Recoverable Metals by ICPMS, Batch R102761

Blank (R102761-BLK1)
Prepared: Sep-06-11, Analyzed: Sep-07-11

<table>
<thead>
<tr>
<th>Metal</th>
<th>Reporting</th>
<th>Spike</th>
<th>Source</th>
<th>% REC Limits</th>
<th>% RPD Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>< 0.005</td>
<td>0.005 mg/L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>< 0.0001</td>
<td>0.0001 mg/L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>< 0.0005</td>
<td>0.0005 mg/L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td>< 0.005</td>
<td>0.005 mg/L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beryllium</td>
<td>< 0.0001</td>
<td>0.0001 mg/L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bismuth</td>
<td>< 0.0001</td>
<td>0.0001 mg/L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boron</td>
<td>< 0.004</td>
<td>0.004 mg/L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>< 0.00001</td>
<td>0.00001 mg/L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>< 0.5</td>
<td>0.5 mg/L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>< 0.0005</td>
<td>0.0005 mg/L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cobalt</td>
<td>< 0.00005</td>
<td>0.00005 mg/L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>< 0.0002</td>
<td>0.0002 mg/L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>< 0.01</td>
<td>0.01 mg/L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>< 0.0001</td>
<td>0.0001 mg/L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithium</td>
<td>< 0.0001</td>
<td>0.0001 mg/L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>< 0.01</td>
<td>0.01 mg/L</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
QUALITY CONTROL DATA

CLIENT
Galena Environmental Ltd.

PROJECT
Slocan Lake Stewartship Society

WORK ORDER
K100013

REPORTED
Sep-09-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Source</th>
<th>Result</th>
<th>% REC Limits</th>
<th>% RPD Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Recoverable Metals by ICPMS, Batch R102761, Continued</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (R102761-BLK1), Continued</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>< 0.0002</td>
<td>0.0002 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>< 0.0002</td>
<td>0.0002 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molybdenum</td>
<td>< 0.0002</td>
<td>0.0002 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>< 0.02</td>
<td>0.02 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus</td>
<td>< 0.02</td>
<td>0.02 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>< 0.0005</td>
<td>0.0005 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silicon</td>
<td>< 0.5</td>
<td>0.5 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td>< 0.00005</td>
<td>0.00005 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>< 0.02</td>
<td>0.02 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strontium</td>
<td>< 0.001</td>
<td>0.001 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tellurium</td>
<td>< 0.0002</td>
<td>0.0002 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thorium</td>
<td>< 0.0001</td>
<td>0.0001 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin</td>
<td>< 0.0002</td>
<td>0.0002 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Titanium</td>
<td>< 0.005</td>
<td>0.005 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uranium</td>
<td>< 0.0002</td>
<td>0.0002 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanadium</td>
<td>< 0.001</td>
<td>0.001 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>< 0.004</td>
<td>0.004 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zirconium</td>
<td>< 0.0001</td>
<td>0.0001 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (R102761-BLK2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum</td>
<td>< 0.005</td>
<td>0.005 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>< 0.0001</td>
<td>0.0001 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>< 0.005</td>
<td>0.005 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td>< 0.005</td>
<td>0.005 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beryllium</td>
<td>< 0.0001</td>
<td>0.0001 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bismuth</td>
<td>< 0.0001</td>
<td>0.0001 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boron</td>
<td>< 0.004</td>
<td>0.004 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>< 0.00001</td>
<td>0.00001 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>< 0.5</td>
<td>0.5 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>< 0.0005</td>
<td>0.0005 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cobalt</td>
<td>< 0.0005</td>
<td>0.0005 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>< 0.0002</td>
<td>0.0002 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>< 0.01</td>
<td>0.01 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>< 0.0001</td>
<td>0.0001 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithium</td>
<td>< 0.0001</td>
<td>0.0001 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>< 0.01</td>
<td>0.01 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>< 0.0002</td>
<td>0.0002 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>< 0.0002</td>
<td>0.0002 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molybdenum</td>
<td>< 0.0001</td>
<td>0.0001 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>< 0.0002</td>
<td>0.0002 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus</td>
<td>< 0.02</td>
<td>0.02 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>< 0.02</td>
<td>0.02 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selenium</td>
<td>< 0.0005</td>
<td>0.0005 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silicon</td>
<td>< 0.5</td>
<td>0.5 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td>< 0.0005</td>
<td>0.0005 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>< 0.02</td>
<td>0.02 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strontium</td>
<td>< 0.001</td>
<td>0.001 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tellurium</td>
<td>< 0.0002</td>
<td>0.0002 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thorium</td>
<td>< 0.0001</td>
<td>0.0001 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin</td>
<td>< 0.0002</td>
<td>0.0002 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Titanium</td>
<td>< 0.005</td>
<td>0.005 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uranium</td>
<td>< 0.0002</td>
<td>0.0002 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanadium</td>
<td>< 0.001</td>
<td>0.001 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>< 0.004</td>
<td>0.004 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zirconium</td>
<td>< 0.0001</td>
<td>0.0001 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duplicate (R102761-DUP1)</td>
<td>Source: K110013-02</td>
<td>Prepared: Sep-06-11, Analyzed: Sep-07-11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum</td>
<td>0.007</td>
<td>0.005 mg/L</td>
<td>0.007</td>
<td>30</td>
</tr>
<tr>
<td>Antimony</td>
<td>0.0001</td>
<td>0.0001 mg/L</td>
<td>0.0001</td>
<td>25</td>
</tr>
<tr>
<td>Arsenic</td>
<td>< 0.0005</td>
<td>0.0005 mg/L</td>
<td>< 0.0005</td>
<td>25</td>
</tr>
</tbody>
</table>

CARO Analytical Services

Page 10 of 12
QUALITY CONTROL DATA

CLIENT
Galena Environmental Ltd.

PROJECT
Slocan Lake Stewartship Society

WORK ORDER
KI0013

REPORTED
Sep-09-11

Total Recoverable Metals by ICPMS, Batch R102761, Continued

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Spike</th>
<th>Source</th>
<th>% REC</th>
<th>% RPD</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barium</td>
<td>0.025</td>
<td>0.005</td>
<td>mg/L</td>
<td>0.025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beryllium</td>
<td>< 0.0001</td>
<td>0.0001</td>
<td>mg/L</td>
<td>< 0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bismuth</td>
<td>< 0.0001</td>
<td>0.0001</td>
<td>mg/L</td>
<td>< 0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boron</td>
<td>< 0.004</td>
<td>0.004</td>
<td>mg/L</td>
<td>0.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.00013</td>
<td>0.00013</td>
<td>mg/L</td>
<td>0.00012</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Calcium</td>
<td>13.7</td>
<td>0.5</td>
<td>mg/L</td>
<td>14.1</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Chromium</td>
<td>< 0.0005</td>
<td>0.0005</td>
<td>mg/L</td>
<td>< 0.0005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cobalt</td>
<td>< 0.00005</td>
<td>0.00005</td>
<td>mg/L</td>
<td>< 0.00005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>0.9003</td>
<td>0.0002</td>
<td>mg/L</td>
<td>0.0002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>< 0.1</td>
<td>0.01</td>
<td>mg/L</td>
<td>< 0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>< 0.0001</td>
<td>0.0001</td>
<td>mg/L</td>
<td>0.00007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithium</td>
<td>0.0009</td>
<td>0.0001</td>
<td>mg/L</td>
<td>0.0010</td>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>Magnesium</td>
<td>2.15</td>
<td>0.01</td>
<td>mg/L</td>
<td>2.22</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>Manganese</td>
<td>0.0006</td>
<td>0.0002</td>
<td>mg/L</td>
<td>0.0006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>< 0.00002</td>
<td>0.00002</td>
<td>mg/L</td>
<td>0.00005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molybdenum</td>
<td>0.0009</td>
<td>0.0001</td>
<td>mg/L</td>
<td>0.0010</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>Nickel</td>
<td>0.0003</td>
<td>0.0002</td>
<td>mg/L</td>
<td>0.0003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus</td>
<td>< 0.02</td>
<td>0.02</td>
<td>mg/L</td>
<td>< 0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>0.51</td>
<td>0.02</td>
<td>mg/L</td>
<td>0.53</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>Selenium</td>
<td>< 0.0005</td>
<td>0.0005</td>
<td>mg/L</td>
<td>< 0.0005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silicon</td>
<td>2.9</td>
<td>0.5</td>
<td>mg/L</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td>< 0.00005</td>
<td>0.00005</td>
<td>mg/L</td>
<td>< 0.00005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>1.22</td>
<td>0.02</td>
<td>mg/L</td>
<td>1.26</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>Strontium</td>
<td>0.211</td>
<td>0.01</td>
<td>mg/L</td>
<td>0.215</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Tellurium</td>
<td>< 0.0002</td>
<td>0.0002</td>
<td>mg/L</td>
<td>< 0.0002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thallium</td>
<td>< 0.00002</td>
<td>0.00002</td>
<td>mg/L</td>
<td>< 0.00002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thorium</td>
<td>< 0.0001</td>
<td>0.0001</td>
<td>mg/L</td>
<td>< 0.0001</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Tin</td>
<td>< 0.0002</td>
<td>0.0002</td>
<td>mg/L</td>
<td>< 0.0002</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Titanium</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>< 0.005</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Uranium</td>
<td>0.00030</td>
<td>0.0002</td>
<td>mg/L</td>
<td>0.0031</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>Vanadium</td>
<td>< 0.001</td>
<td>0.001</td>
<td>mg/L</td>
<td>< 0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>0.019</td>
<td>0.004</td>
<td>mg/L</td>
<td>0.020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zirconium</td>
<td>< 0.0001</td>
<td>0.0001</td>
<td>mg/L</td>
<td>< 0.0001</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

Matrix Spike (R102761-MS1)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Spike</th>
<th>Source</th>
<th>% REC</th>
<th>% RPD</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony</td>
<td>0.411</td>
<td>0.0001</td>
<td>mg/L</td>
<td>0.400</td>
<td></td>
<td>103</td>
</tr>
<tr>
<td>Arsenic</td>
<td>0.020</td>
<td>0.0005</td>
<td>mg/L</td>
<td>0.020</td>
<td>< 0.0005</td>
<td>100</td>
</tr>
<tr>
<td>Barium</td>
<td>0.984</td>
<td>0.005</td>
<td>mg/L</td>
<td>1.00</td>
<td>0.020</td>
<td>96</td>
</tr>
<tr>
<td>Beryllium</td>
<td>0.0974</td>
<td>0.0001</td>
<td>mg/L</td>
<td>0.100</td>
<td>< 0.0001</td>
<td>97</td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.0956</td>
<td>0.00001</td>
<td>mg/L</td>
<td>0.100</td>
<td>0.00013</td>
<td>95</td>
</tr>
<tr>
<td>Chromium</td>
<td>0.416</td>
<td>0.0005</td>
<td>mg/L</td>
<td>0.460</td>
<td>< 0.0005</td>
<td>104</td>
</tr>
<tr>
<td>Cobalt</td>
<td>0.418</td>
<td>0.00005</td>
<td>mg/L</td>
<td>0.460</td>
<td>< 0.00005</td>
<td>105</td>
</tr>
<tr>
<td>Copper</td>
<td>0.437</td>
<td>0.0002</td>
<td>mg/L</td>
<td>0.460</td>
<td>0.0004</td>
<td>109</td>
</tr>
<tr>
<td>Iron</td>
<td>2.12</td>
<td>0.01</td>
<td>mg/L</td>
<td>2.00</td>
<td>0.01</td>
<td>105</td>
</tr>
<tr>
<td>Lead</td>
<td>0.206</td>
<td>0.001</td>
<td>mg/L</td>
<td>0.200</td>
<td>0.00013</td>
<td>103</td>
</tr>
<tr>
<td>Manganese</td>
<td>0.396</td>
<td>0.0002</td>
<td>mg/L</td>
<td>0.460</td>
<td>0.0013</td>
<td>99</td>
</tr>
<tr>
<td>Nickel</td>
<td>0.398</td>
<td>0.0002</td>
<td>mg/L</td>
<td>0.460</td>
<td>0.0003</td>
<td>100</td>
</tr>
<tr>
<td>Selenium</td>
<td>0.0957</td>
<td>0.0005</td>
<td>mg/L</td>
<td>0.100</td>
<td>< 0.0005</td>
<td>96</td>
</tr>
<tr>
<td>Silver</td>
<td>0.0990</td>
<td>0.0005</td>
<td>mg/L</td>
<td>0.100</td>
<td>< 0.00005</td>
<td>99</td>
</tr>
<tr>
<td>Thallium</td>
<td>0.110</td>
<td>0.0002</td>
<td>mg/L</td>
<td>0.110</td>
<td>< 0.00005</td>
<td>104</td>
</tr>
<tr>
<td>Vanadium</td>
<td>0.399</td>
<td>0.001</td>
<td>mg/L</td>
<td>0.460</td>
<td>< 0.001</td>
<td>100</td>
</tr>
<tr>
<td>Zinc</td>
<td>1.02</td>
<td>0.004</td>
<td>mg/L</td>
<td>1.00</td>
<td>0.018</td>
<td>101</td>
</tr>
</tbody>
</table>

Reference (R102761-SRM1)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Spike</th>
<th>Source</th>
<th>% REC</th>
<th>% RPD</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>0.298</td>
<td>0.005</td>
<td>mg/L</td>
<td>0.296</td>
<td></td>
<td>101</td>
</tr>
<tr>
<td>Antimony</td>
<td>0.0473</td>
<td>0.0001</td>
<td>mg/L</td>
<td>0.0505</td>
<td>94</td>
<td>88-114</td>
</tr>
<tr>
<td>Arsenic</td>
<td>0.115</td>
<td>0.0005</td>
<td>mg/L</td>
<td>0.122</td>
<td>94</td>
<td>88-114</td>
</tr>
<tr>
<td>Barium</td>
<td>0.744</td>
<td>0.005</td>
<td>mg/L</td>
<td>0.777</td>
<td>96</td>
<td>72-104</td>
</tr>
<tr>
<td>Beryllium</td>
<td>0.0467</td>
<td>0.0001</td>
<td>mg/L</td>
<td>0.0488</td>
<td>96</td>
<td>76-131</td>
</tr>
<tr>
<td>Boron</td>
<td>3.38</td>
<td>0.004</td>
<td>mg/L</td>
<td>3.40</td>
<td>99</td>
<td>75-121</td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.0451</td>
<td>0.0001</td>
<td>mg/L</td>
<td>0.0490</td>
<td>92</td>
<td>89-111</td>
</tr>
<tr>
<td>Calcium</td>
<td>10.2</td>
<td>0.5</td>
<td>mg/L</td>
<td>10.2</td>
<td>100</td>
<td>86-121</td>
</tr>
<tr>
<td>Chromium</td>
<td>0.241</td>
<td>0.005</td>
<td>mg/L</td>
<td>0.242</td>
<td>100</td>
<td>89-114</td>
</tr>
</tbody>
</table>
QUALITY CONTROL DATA

CLIENT
Galena Environmental Ltd.

PROJECT
Slocan Lake Stewartship Society

WORK ORDER #
K100013

REPORTED
Sep-09-11

Total Recoverable Metals by ICPMS, Batch R102761, Continued

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% REC</th>
<th>% REC Limits</th>
<th>% RPD</th>
<th>% RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cobalt</td>
<td>0.0377</td>
<td>0.00005 mg/L</td>
<td></td>
<td>0.0366</td>
<td>103</td>
<td>91-113</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>0.522</td>
<td>0.0002 mg/L</td>
<td></td>
<td>0.487</td>
<td>107</td>
<td>91-115</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>0.196</td>
<td>0.0001 mg/L</td>
<td></td>
<td>0.193</td>
<td>101</td>
<td>92-113</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithium</td>
<td>0.404</td>
<td>0.0001 mg/L</td>
<td></td>
<td>0.390</td>
<td>103</td>
<td>85-115</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>3.45</td>
<td>0.01 mg/L</td>
<td></td>
<td>3.31</td>
<td>104</td>
<td>78-120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>0.0008</td>
<td>0.00002 mg/L</td>
<td></td>
<td>0.0799</td>
<td>99</td>
<td>90-114</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>0.0046</td>
<td>0.00002 mg/L</td>
<td></td>
<td>0.00456</td>
<td>103</td>
<td>50-150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molybdenum</td>
<td>0.190</td>
<td>0.0001 mg/L</td>
<td></td>
<td>0.197</td>
<td>97</td>
<td>90-111</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>0.243</td>
<td>0.0002 mg/L</td>
<td></td>
<td>0.242</td>
<td>100</td>
<td>90-111</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus</td>
<td>0.21</td>
<td>0.06 mg/L</td>
<td></td>
<td>0.233</td>
<td>90</td>
<td>85-115</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>1.58</td>
<td>0.02 mg/L</td>
<td></td>
<td>1.67</td>
<td>105</td>
<td>88-111</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selenium</td>
<td>7.93</td>
<td>0.02 mg/L</td>
<td></td>
<td>7.64</td>
<td>104</td>
<td>82-123</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>0.339</td>
<td>0.06 mg/L</td>
<td></td>
<td>0.363</td>
<td>93</td>
<td>84-112</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thallium</td>
<td>0.0768</td>
<td>0.00002 mg/L</td>
<td></td>
<td>0.0794</td>
<td>99</td>
<td>91-114</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanadium</td>
<td>0.373</td>
<td>0.0001 mg/L</td>
<td></td>
<td>0.376</td>
<td>99</td>
<td>86-111</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>2.54</td>
<td>0.004 mg/L</td>
<td></td>
<td>2.42</td>
<td>105</td>
<td>85-111</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reference (R102761-SRM1), Continued
Prepared: Sep-06-11, Analyzed: Sep-07-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% REC</th>
<th>% REC Limits</th>
<th>% RPD</th>
<th>% RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>0.295</td>
<td>0.005 mg/L</td>
<td></td>
<td>0.296</td>
<td>100</td>
<td>81-129</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>0.0472</td>
<td>0.0001 mg/L</td>
<td></td>
<td>0.0505</td>
<td>93</td>
<td>88-114</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>0.116</td>
<td>0.0005 mg/L</td>
<td></td>
<td>0.122</td>
<td>95</td>
<td>88-114</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td>0.739</td>
<td>0.005 mg/L</td>
<td></td>
<td>0.777</td>
<td>95</td>
<td>72-104</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beryllium</td>
<td>0.0468</td>
<td>0.0001 mg/L</td>
<td></td>
<td>0.0468</td>
<td>96</td>
<td>76-131</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boron</td>
<td>3.49</td>
<td>0.01 mg/L</td>
<td></td>
<td>3.40</td>
<td>103</td>
<td>75-121</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.0447</td>
<td>0.00001 mg/L</td>
<td></td>
<td>0.0490</td>
<td>91</td>
<td>89-111</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>10.4</td>
<td>0.5 mg/L</td>
<td></td>
<td>10.2</td>
<td>102</td>
<td>86-121</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>0.239</td>
<td>0.0005 mg/L</td>
<td></td>
<td>0.242</td>
<td>99</td>
<td>89-114</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cobalt</td>
<td>0.0375</td>
<td>0.00005 mg/L</td>
<td></td>
<td>0.0366</td>
<td>102</td>
<td>91-113</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>0.517</td>
<td>0.0002 mg/L</td>
<td></td>
<td>0.487</td>
<td>106</td>
<td>91-115</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>0.49</td>
<td>0.01 mg/L</td>
<td></td>
<td>0.469</td>
<td>105</td>
<td>77-124</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>0.199</td>
<td>0.0001 mg/L</td>
<td></td>
<td>0.193</td>
<td>103</td>
<td>92-113</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithium</td>
<td>0.399</td>
<td>0.0001 mg/L</td>
<td></td>
<td>0.390</td>
<td>102</td>
<td>85-115</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>3.39</td>
<td>0.01 mg/L</td>
<td></td>
<td>3.31</td>
<td>102</td>
<td>78-120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>0.106</td>
<td>0.0002 mg/L</td>
<td></td>
<td>0.109</td>
<td>97</td>
<td>90-114</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>0.00476</td>
<td>0.00002 mg/L</td>
<td></td>
<td>0.00456</td>
<td>104</td>
<td>50-150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molybdenum</td>
<td>0.191</td>
<td>0.0001 mg/L</td>
<td></td>
<td>0.197</td>
<td>97</td>
<td>90-111</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>0.241</td>
<td>0.0002 mg/L</td>
<td></td>
<td>0.242</td>
<td>100</td>
<td>90-111</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus</td>
<td>0.22</td>
<td>0.02 mg/L</td>
<td></td>
<td>0.233</td>
<td>93</td>
<td>85-115</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>6.18</td>
<td>0.02 mg/L</td>
<td></td>
<td>5.93</td>
<td>104</td>
<td>84-113</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selenium</td>
<td>0.109</td>
<td>0.0005 mg/L</td>
<td></td>
<td>0.115</td>
<td>95</td>
<td>85-115</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>7.82</td>
<td>0.02 mg/L</td>
<td></td>
<td>7.64</td>
<td>102</td>
<td>82-123</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strontium</td>
<td>0.337</td>
<td>0.06 mg/L</td>
<td></td>
<td>0.363</td>
<td>93</td>
<td>88-112</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thallium</td>
<td>0.0791</td>
<td>0.00002 mg/L</td>
<td></td>
<td>0.0794</td>
<td>100</td>
<td>91-114</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uranium</td>
<td>0.0177</td>
<td>0.00002 mg/L</td>
<td></td>
<td>0.0192</td>
<td>92</td>
<td>85-120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanadium</td>
<td>0.373</td>
<td>0.001 mg/L</td>
<td></td>
<td>0.376</td>
<td>99</td>
<td>86-111</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>2.52</td>
<td>0.004 mg/L</td>
<td></td>
<td>2.42</td>
<td>104</td>
<td>85-111</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CERTIFICATE OF ANALYSIS

CLIENT
Galena Environmental Ltd.
8075 Upper Galena Farm Road, PO Box 37
Silverton BC
VOG 2B0

ATTENTION
Luce Paquin

RECEIVED / TEMP
Sep-06-11 14:25 / 7.0 °C

REPORTED
Sep-13-11

COC #(s)
32547

WORK ORDER
K110127

PROJECT
Slocan Lake Stewartship Society

General Comments:

Methods not described in these publications are conducted according to procedures accepted by appropriate regulatory agencies, and/or are done in accordance with recognized professional standards using accepted testing methodologies and quality control efforts except where otherwise agreed to by the client.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued unless otherwise agreed to in writing.

- All solids results are reported on a dry weight basis unless otherwise noted
- Units:
 - mg/kg = milligrams per kilogram, equivalent to parts per million (ppm)
 - mg/L = milligrams per litre, equivalent to parts per million (ppm)
 - ug/L = micrograms per litre, equivalent to parts per billion (ppb)
 - ug/g = micrograms per gram, equivalent to parts per million (ppm)
 - ug/m3 = micrograms per cubic meter of air
- "RDL" Reported detection limit
- "<" Less than reported detection limit
- "AO" Aesthetic objective
- "MAC" Maximum acceptable concentration (health-related guideline)
- "LAB" RMD = Richmond location, KEL = Kelowna location, EDM = Edmonton location, SUB = Subcontracted

Please contact CARO if more information is needed or to provide feedback on our services.

CARO Analytical Services

Final Review Per: Jennifer Shanko, AScT
Administration Coordinator

CARO Analytical Services

#120 12791 Clarke Place #102 3677 Highway 97N 9523 42 Avenue
Richmond, BC V6V 2H9 Kelowna, BC V1X 5C3 Edmonton, AB T6E 5R2
Tel: 604-279-1499 Fax: 604-279-1599 Tel: 250-765-9646 Fax: 250-765-3893 Tel: 780-628-3737
www.caro.ca
General Parameters

Site 3 - 5m (K1I0127-01) Matrix: Water Sampled: Aug-30-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>0.6</td>
<td>0.1</td>
<td>ug/L</td>
<td>Sep-06-11</td>
<td>Sep-13-11</td>
<td>HT</td>
</tr>
<tr>
<td>Hardness, Total (Total as CaCO3)</td>
<td>40.0</td>
<td>1.25</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.039</td>
<td>0.01</td>
<td>mg/L</td>
<td>Sep-07-11</td>
<td>Sep-07-11</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.039</td>
<td>0.01</td>
<td>mg/L</td>
<td>Sep-07-11</td>
<td>Sep-07-11</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td></td>
<td>mg/L</td>
<td>Sep-07-11</td>
<td>Sep-07-11</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.09</td>
<td>0.05</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-12-11</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.131</td>
<td>0.05</td>
<td>mg/L</td>
<td>Sep-07-11</td>
<td>Sep-12-11</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>< 0.005</td>
<td></td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-08-11</td>
<td>HT</td>
</tr>
</tbody>
</table>

Site 3 - 50m (K1I0127-02) Matrix: Water Sampled: Aug-30-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>1.0</td>
<td>0.1</td>
<td>ug/L</td>
<td>Sep-06-11</td>
<td>Sep-13-11</td>
<td>HT</td>
</tr>
<tr>
<td>Hardness, Total (Total as CaCO3)</td>
<td>44.3</td>
<td>1.25</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.156</td>
<td>0.01</td>
<td>mg/L</td>
<td>Sep-07-11</td>
<td>Sep-07-11</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.156</td>
<td>0.01</td>
<td>mg/L</td>
<td>Sep-07-11</td>
<td>Sep-07-11</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td></td>
<td>mg/L</td>
<td>Sep-07-11</td>
<td>Sep-07-11</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.12</td>
<td>0.05</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-12-11</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.275</td>
<td>0.05</td>
<td>mg/L</td>
<td>Sep-07-11</td>
<td>Sep-12-11</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>< 0.005</td>
<td></td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-08-11</td>
<td>HT</td>
</tr>
</tbody>
</table>

Site 4 - 5m (K1I0127-03) Matrix: Water Sampled: Aug-30-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>0.7</td>
<td>0.1</td>
<td>ug/L</td>
<td>Sep-06-11</td>
<td>Sep-13-11</td>
<td>HT</td>
</tr>
<tr>
<td>Hardness, Total (Total as CaCO3)</td>
<td>41.9</td>
<td>1.25</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.031</td>
<td>0.01</td>
<td>mg/L</td>
<td>Sep-07-11</td>
<td>Sep-07-11</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.031</td>
<td>0.01</td>
<td>mg/L</td>
<td>Sep-07-11</td>
<td>Sep-07-11</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td></td>
<td>mg/L</td>
<td>Sep-07-11</td>
<td>Sep-07-11</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.13</td>
<td>0.05</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-12-11</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.162</td>
<td>0.05</td>
<td>mg/L</td>
<td>Sep-07-11</td>
<td>Sep-12-11</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>< 0.005</td>
<td></td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-08-11</td>
<td>HT</td>
</tr>
</tbody>
</table>

Site 4 - 50m (K1I0127-04) Matrix: Water Sampled: Aug-30-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>1.0</td>
<td>0.1</td>
<td>ug/L</td>
<td>Sep-06-11</td>
<td>Sep-13-11</td>
<td>HT</td>
</tr>
<tr>
<td>Hardness, Total (Total as CaCO3)</td>
<td>45.9</td>
<td>1.25</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.093</td>
<td>0.01</td>
<td>mg/L</td>
<td>Sep-07-11</td>
<td>Sep-07-11</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.093</td>
<td>0.01</td>
<td>mg/L</td>
<td>Sep-07-11</td>
<td>Sep-07-11</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td></td>
<td>mg/L</td>
<td>Sep-07-11</td>
<td>Sep-07-11</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.10</td>
<td>0.05</td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-12-11</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.194</td>
<td>0.05</td>
<td>mg/L</td>
<td>Sep-07-11</td>
<td>Sep-12-11</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>< 0.005</td>
<td></td>
<td>mg/L</td>
<td>Sep-06-11</td>
<td>Sep-08-11</td>
<td>HT</td>
</tr>
</tbody>
</table>

Total Recoverable Metals by ICPMS

Site 3 - 5m (K1I0127-01) Matrix: Water Sampled: Aug-30-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>0.014</td>
<td>0.005</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>0.0002</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>< 0.0005</td>
<td></td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td>0.024</td>
<td>0.005</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
</tbody>
</table>
SAMPLE DATA

CLIENT
Galena Environmental Ltd.

PROJECT
Slocan Lake Stewartship Society

WORK ORDER
K1I0127

REPORTED
Sep-13-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Recoverable Metals by ICPMS, Continued</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site 3 - 5m (K1I0127-01) Matrix: Water Sampled: Aug-30-11, Continued</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beryllium</td>
<td>< 0.0001</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Bismuth</td>
<td>< 0.0001</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Boron</td>
<td>0.007</td>
<td>0.004</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.00014</td>
<td>0.00001</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>12.9</td>
<td>0.5</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>< 0.0005</td>
<td>0.0005</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Cobalt</td>
<td>< 0.00005</td>
<td>0.00005</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>< 0.0002</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>0.0003</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Lithium</td>
<td>0.0009</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>1.90</td>
<td>0.01</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>0.0014</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>< 0.00002</td>
<td>0.00002</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Molybdenum</td>
<td>0.0009</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>0.0003</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Phosphorus</td>
<td>< 0.02</td>
<td>0.02</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>0.46</td>
<td>0.02</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Selenium</td>
<td>0.0005</td>
<td>0.0005</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Silicon</td>
<td>2.3</td>
<td>0.5</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td>0.00007</td>
<td>0.00005</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>0.98</td>
<td>0.02</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Strontium</td>
<td>0.198</td>
<td>0.001</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Tellurium</td>
<td>< 0.0002</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Thallium</td>
<td>< 0.00002</td>
<td>0.00002</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Thorium</td>
<td>< 0.0001</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Tin</td>
<td>< 0.0002</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Titanium</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Uranium</td>
<td>0.00030</td>
<td>0.00002</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Vanadium</td>
<td>< 0.001</td>
<td>0.001</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>0.018</td>
<td>0.004</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Zirconium</td>
<td>< 0.0001</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
</tbody>
</table>

<p>| Site 3 - 50m (K1I0127-02) Matrix: Water Sampled: Aug-30-11 | | | | | | |
| Aluminum | < 0.005 | 0.005 | mg/L | Sep-08-11 | Sep-09-11 | |
| Antimony | 0.0002 | 0.0001 | mg/L | Sep-08-11 | Sep-09-11 | |
| Arsenic | < 0.0005 | 0.0005 | mg/L | Sep-08-11 | Sep-09-11 | |
| Barium | 0.025 | 0.005 | mg/L | Sep-08-11 | Sep-09-11 | |
| Beryllium | < 0.0001 | 0.0001 | mg/L | Sep-08-11 | Sep-09-11 | |
| Bismuth | < 0.0001 | 0.0001 | mg/L | Sep-08-11 | Sep-09-11 | |
| Boron | 0.006 | 0.004 | mg/L | Sep-08-11 | Sep-09-11 | |
| Cadmium | 0.00013 | 0.00001 | mg/L | Sep-08-11 | Sep-09-11 | |
| Calcium | 14.1 | 0.5 | mg/L | Sep-08-11 | Sep-09-11 | |
| Chromium | < 0.0005 | 0.0005 | mg/L | Sep-08-11 | Sep-09-11 | |
| Cobalt | < 0.00005 | 0.00005 | mg/L | Sep-08-11 | Sep-09-11 | |
| Copper | < 0.0002 | 0.0002 | mg/L | Sep-08-11 | Sep-09-11 | |</p>
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>0.0003</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Lithium</td>
<td>0.0011</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>2.16</td>
<td>0.01</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>0.0008</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>< 0.0002</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Molybdenum</td>
<td>0.0011</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>0.0003</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Phosphorus</td>
<td>< 0.02</td>
<td>0.02</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>0.52</td>
<td>0.02</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Selenium</td>
<td>< 0.0005</td>
<td>0.0005</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Silicon</td>
<td>2.5</td>
<td>0.5</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td>< 0.0005</td>
<td>0.0005</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>1.24</td>
<td>0.02</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Strontium</td>
<td>0.215</td>
<td>0.001</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Tellurium</td>
<td>< 0.0002</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Thallium</td>
<td>< 0.0002</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Thorium</td>
<td>< 0.0001</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Tin</td>
<td>< 0.0002</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Titanium</td>
<td>< 0.0005</td>
<td>0.0005</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Uranium</td>
<td>0.00030</td>
<td>0.00002</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Vanadium</td>
<td>< 0.001</td>
<td>0.001</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>0.019</td>
<td>0.004</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Zirconium</td>
<td>< 0.0001</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
</tbody>
</table>

Site 4 - 5m (K1I0127-03) Matrix: Water Sampled: Aug-30-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>0.015</td>
<td>0.005</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>0.0002</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>< 0.0005</td>
<td>0.0005</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td>0.026</td>
<td>0.005</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Beryllium</td>
<td>< 0.0001</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Bismuth</td>
<td>< 0.0001</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Boron</td>
<td>0.005</td>
<td>0.004</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.00012</td>
<td>0.00001</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>13.6</td>
<td>0.5</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>< 0.0005</td>
<td>0.0005</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Cobalt</td>
<td>< 0.0005</td>
<td>0.00005</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>< 0.0002</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>0.0007</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Lithium</td>
<td>0.0009</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>1.96</td>
<td>0.01</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>0.0019</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>< 0.0002</td>
<td>0.00002</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Molybdenum</td>
<td>0.0009</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>0.0003</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
</tbody>
</table>
Total Recoverable Metals by ICPMS, Continued

Site 4 - 5m (K1I0127-03) Matrix: Water Sampled: Aug-30-11, Continued

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphorus</td>
<td>< 0.02</td>
<td>0.02</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>0.46</td>
<td>0.02</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Selenium</td>
<td>< 0.0005</td>
<td>0.0005</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Silicon</td>
<td>2.4</td>
<td>0.5</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td>< 0.00005</td>
<td>0.00005</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>1.03</td>
<td>0.02</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Strontium</td>
<td>0.213</td>
<td>0.001</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Tellurium</td>
<td>< 0.0002</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Thallium</td>
<td>< 0.0002</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Thorium</td>
<td>< 0.001</td>
<td>0.001</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Tin</td>
<td>< 0.002</td>
<td>0.002</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Titanium</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Uranium</td>
<td>0.00030</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Vanadium</td>
<td>< 0.001</td>
<td>0.001</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>0.013</td>
<td>0.004</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Zirconium</td>
<td>< 0.001</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
</tbody>
</table>

Site 4 - 50m (K1I0127-04) Matrix: Water Sampled: Aug-30-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>0.006</td>
<td>0.005</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>0.0001</td>
<td>0.001</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>< 0.0005</td>
<td>0.0005</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td>0.026</td>
<td>0.005</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Beryllium</td>
<td>< 0.0001</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Bismuth</td>
<td>< 0.0001</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Boron</td>
<td>0.004</td>
<td>0.004</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.00011</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>14.6</td>
<td>0.5</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>< 0.0005</td>
<td>0.0005</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Cobalt</td>
<td>< 0.00005</td>
<td>0.00005</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>< 0.0002</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>0.0002</td>
<td>0.001</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Lithium</td>
<td>0.0010</td>
<td>0.001</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>2.26</td>
<td>0.01</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>0.0007</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>< 0.00002</td>
<td>0.00002</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Molybdenum</td>
<td>0.0010</td>
<td>0.001</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>0.0003</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Phosphorus</td>
<td>< 0.02</td>
<td>0.02</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>0.55</td>
<td>0.02</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Selenium</td>
<td>< 0.0005</td>
<td>0.0005</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Silicon</td>
<td>2.5</td>
<td>0.5</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td>< 0.00005</td>
<td>0.00005</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>1.29</td>
<td>0.02</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Strontium</td>
<td>0.225</td>
<td>0.001</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Tellurium</td>
<td>< 0.0002</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
</tbody>
</table>
Total Recoverable Metals by ICPMS, Continued

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thallium</td>
<td>< 0.00002</td>
<td>0.00002 mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Thorium</td>
<td>< 0.0001</td>
<td>0.0001 mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Tin</td>
<td>< 0.0002</td>
<td>0.0002 mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Titanium</td>
<td>< 0.005</td>
<td>0.005 mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Uranium</td>
<td>0.00032</td>
<td>0.00002 mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Vanadium</td>
<td>< 0.001</td>
<td>0.001 mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>0.019</td>
<td>0.004 mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
<tr>
<td>Zirconium</td>
<td>< 0.0001</td>
<td>0.0001 mg/L</td>
<td>Sep-08-11</td>
<td>Sep-09-11</td>
<td></td>
</tr>
</tbody>
</table>

Sample Qualifiers:

HT Parameter(s) analyzed outside of the EPA/BCMOE/APHA recommended holding time.
Analysis / Report Information

Client
Galena Environmental Ltd.

Project
Slocan Lake Stewardship Society

Work Order #
K110127

Reported
Sep-13-11

<table>
<thead>
<tr>
<th>Analysis Description</th>
<th>Method Reference(s) (* = modified from)</th>
<th>LAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-A</td>
<td>N/A</td>
<td>KEL</td>
</tr>
<tr>
<td>Nitrate by IC</td>
<td>IC</td>
<td>KEL</td>
</tr>
<tr>
<td>Nitrite by IC</td>
<td>IC</td>
<td>KEL</td>
</tr>
<tr>
<td>Total Nitrogen (TKN + NO3-N+NO2-N)</td>
<td>Calc</td>
<td>KEL</td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>N/A</td>
<td>KEL</td>
</tr>
<tr>
<td>Phosphorus, Total (persulfate)</td>
<td>N/A</td>
<td>KEL</td>
</tr>
<tr>
<td>Total Recoverable Metals by ICPMS</td>
<td>EPA 200.2 *</td>
<td>RMD</td>
</tr>
</tbody>
</table>

Method Reference(s)

- **APHA 10200H**
- **APHA 4110 B**
- **APHA 4110 B**
- **APHA 4500P:B.5/E**
- **EPA 351.2**
- **EPA 4000P:B.5/E**
- **EPA 200.2**
- **EPA 6020A**
The following section reports quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with quality control samples that ensure your data is of the highest quality. Common QC types include:

- **Method Blank (Blk):** Laboratory reagent water is carried through sample preparation and analysis steps. Method Blanks indicate that results are free from contamination, i.e. not biased high from sources such as the sample container or the laboratory environment.

- **Duplicate (Dup):** Preparation and analysis of a replicate aliquot of a sample. Duplicates provide a measure of the analytical method's precision, i.e. how reproducible a result is. Duplicates are only reported if they are associated with your sample data.

- **Blank Spike (BS):** A known amount of standard is carried through sample preparation and analysis steps. Blank Spikes, also known as laboratory control samples (LCS), are prepared from a different source of standard than used for the calibration. They ensure that the calibration is acceptable (i.e. not biased high or low) and also provide a measure of the analytical method's accuracy (i.e. closeness of the result to a target value).

- **Standard Reference Material (SRM):** A material of similar matrix to the samples, externally certified for the parameter(s) listed. Standard Reference Materials ensure that the preparation steps in the method are adequate to achieve acceptable recoveries of the parameter(s) tested for.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

Analyte Result Reporting Limit Units Spike Level Source Result % REC Limits % RPD Limit Notes

General Parameters, Batch K103757

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% REC</th>
<th>Limits</th>
<th>% RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank (K103757-BLK1)</td>
<td>Prepared: Sep-07-11, Analyzed: Sep-08-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>< 0.005</td>
<td>0.005 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (K103757-BLK2)</td>
<td>Prepared: Sep-07-11, Analyzed: Sep-08-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>< 0.005</td>
<td>0.005 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (K103757-BLK3)</td>
<td>Prepared: Sep-07-11, Analyzed: Sep-08-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>< 0.005</td>
<td>0.005 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS (K103757-BS1)</td>
<td>Prepared: Sep-07-11, Analyzed: Sep-08-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>0.484</td>
<td>0.025 mg/L</td>
<td>0.500</td>
<td>97</td>
<td>75-116</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS (K103757-BS2)</td>
<td>Prepared: Sep-07-11, Analyzed: Sep-08-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>0.503</td>
<td>0.025 mg/L</td>
<td>0.500</td>
<td>101</td>
<td>75-116</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS (K103757-BS3)</td>
<td>Prepared: Sep-07-11, Analyzed: Sep-08-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>0.518</td>
<td>0.025 mg/L</td>
<td>0.500</td>
<td>104</td>
<td>75-116</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duplicate (K103757-DUP3)</td>
<td>Source: K1I0127-03</td>
<td>Prepared: Sep-07-11, Analyzed: Sep-08-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>< 0.005</td>
<td>0.005 mg/L</td>
<td>< 0.005</td>
<td></td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General Parameters, Batch K103765

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% REC</th>
<th>Limits</th>
<th>% RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank (K103765-BLK1)</td>
<td>Prepared: Sep-07-11, Analyzed: Sep-07-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>< 0.010</td>
<td>0.010 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td>0.01 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (K103765-BLK2)</td>
<td>Prepared: Sep-07-11, Analyzed: Sep-07-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>< 0.010</td>
<td>0.010 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td>0.01 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (K103765-BLK3)</td>
<td>Prepared: Sep-07-11, Analyzed: Sep-07-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>< 0.010</td>
<td>0.010 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td>0.01 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (K103765-BLK4)</td>
<td>Prepared: Sep-07-11, Analyzed: Sep-07-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>< 0.010</td>
<td>0.010 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td>0.01 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
General Parameters, Batch K103765, Continued

Blank (K103765-BLKS)
Prepared: Sep-07-11, Analyzed: Sep-07-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Limit</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
</tr>
</tbody>
</table>

LCS (K103765-BS1)
Prepared: Sep-07-11, Analyzed: Sep-07-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Limit</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>4.24</td>
<td>4.00</td>
<td>85-115</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>4.22</td>
<td>4.00</td>
<td>85-115</td>
</tr>
</tbody>
</table>

LCS (K103765-BS2)
Prepared: Sep-07-11, Analyzed: Sep-07-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Limit</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>4.26</td>
<td>4.00</td>
<td>85-115</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>4.20</td>
<td>4.00</td>
<td>85-115</td>
</tr>
</tbody>
</table>

LCS (K103765-BS3)
Prepared: Sep-07-11, Analyzed: Sep-07-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Limit</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>4.30</td>
<td>4.00</td>
<td>85-115</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>4.25</td>
<td>4.00</td>
<td>85-115</td>
</tr>
</tbody>
</table>

LCS (K103765-BS4)
Prepared: Sep-07-11, Analyzed: Sep-07-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Limit</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>4.26</td>
<td>4.00</td>
<td>85-115</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>4.25</td>
<td>4.00</td>
<td>85-115</td>
</tr>
</tbody>
</table>

LCS (K103765-BS5)
Prepared: Sep-07-11, Analyzed: Sep-07-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Limit</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>4.24</td>
<td>4.00</td>
<td>85-115</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>4.21</td>
<td>4.00</td>
<td>85-115</td>
</tr>
</tbody>
</table>

General Parameters, Batch K103780

Blank (K103780-BLKL1)
Prepared: Sep-08-11, Analyzed: Sep-13-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Limit</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>< 0.1</td>
<td>0.1</td>
<td>ug/L</td>
</tr>
</tbody>
</table>

General Parameters, Batch K103791

Blank (K103791-BLKL1)
Prepared: Sep-08-11, Analyzed: Sep-12-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Limit</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>< 0.05</td>
<td>0.05</td>
<td>mg/L</td>
</tr>
</tbody>
</table>

Blank (K103791-BLKL2)
Prepared: Sep-08-11, Analyzed: Sep-12-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Limit</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>< 0.05</td>
<td>0.05</td>
<td>mg/L</td>
</tr>
</tbody>
</table>

LCS (K103791-BS1)
Prepared: Sep-08-11, Analyzed: Sep-12-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Limit</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>10.2</td>
<td>10.0</td>
<td>89-118</td>
</tr>
</tbody>
</table>

LCS (K103791-BS2)
Prepared: Sep-08-11, Analyzed: Sep-12-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Limit</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>10.5</td>
<td>10.0</td>
<td>89-118</td>
</tr>
</tbody>
</table>

Total Recoverable Metals by ICPMS, Batch R102805

Blank (R102805-BLKL1)
Prepared: Sep-08-11, Analyzed: Sep-09-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Limit</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
</tr>
<tr>
<td>Antimony</td>
<td>< 0.0001</td>
<td>0.0001</td>
<td>mg/L</td>
</tr>
<tr>
<td>Arsenic</td>
<td>< 0.0005</td>
<td>0.0005</td>
<td>mg/L</td>
</tr>
<tr>
<td>Barium</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
</tr>
<tr>
<td>Beryllium</td>
<td>< 0.0001</td>
<td>0.0001</td>
<td>mg/L</td>
</tr>
<tr>
<td>Bismuth</td>
<td>< 0.0001</td>
<td>0.0001</td>
<td>mg/L</td>
</tr>
<tr>
<td>Boron</td>
<td>< 0.004</td>
<td>0.004</td>
<td>mg/L</td>
</tr>
<tr>
<td>Cadmium</td>
<td>< 0.00001</td>
<td>0.00001</td>
<td>mg/L</td>
</tr>
<tr>
<td>Calcium</td>
<td>< 0.5</td>
<td>0.5</td>
<td>mg/L</td>
</tr>
<tr>
<td>Chromium</td>
<td>< 0.0005</td>
<td>0.0005</td>
<td>mg/L</td>
</tr>
<tr>
<td>Cobalt</td>
<td>< 0.0005</td>
<td>0.0005</td>
<td>mg/L</td>
</tr>
<tr>
<td>Copper</td>
<td>< 0.0002</td>
<td>0.0002</td>
<td>mg/L</td>
</tr>
<tr>
<td>Iron</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
</tr>
<tr>
<td>Lead</td>
<td>< 0.0001</td>
<td>0.0001</td>
<td>mg/L</td>
</tr>
<tr>
<td>Lithium</td>
<td>< 0.0001</td>
<td>0.0001</td>
<td>mg/L</td>
</tr>
<tr>
<td>Magnesium</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
</tr>
</tbody>
</table>
QUALITY CONTROL DATA

CLIENT
Galena Environmental Ltd.

PROJECT
Slocan Lake Stewartship Society

WORK ORDER #
K100127

REPORTED
Sep-13-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% REC Limits</th>
<th>% RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manganese</td>
<td>< 0.0002</td>
<td>0.0002 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>< 0.00002</td>
<td>0.00002 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molybdenum</td>
<td>< 0.0001</td>
<td>0.0001 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>< 0.0002</td>
<td>0.0002 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus</td>
<td>< 0.02</td>
<td>0.02 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>< 0.02</td>
<td>0.02 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selenium</td>
<td>< 0.0005</td>
<td>0.0005 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silicon</td>
<td>< 0.5</td>
<td>0.5 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td>< 0.00005</td>
<td>0.00005 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>< 0.02</td>
<td>0.02 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strontium</td>
<td>< 0.001</td>
<td>0.001 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tellurium</td>
<td>< 0.0002</td>
<td>0.0002 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thorium</td>
<td>< 0.0001</td>
<td>0.0001 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin</td>
<td>< 0.0002</td>
<td>0.0002 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Titanium</td>
<td>< 0.005</td>
<td>0.005 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uranium</td>
<td>0.00002</td>
<td>0.00002 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanadium</td>
<td>< 0.001</td>
<td>0.001 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>< 0.004</td>
<td>0.004 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zirconium</td>
<td>< 0.0001</td>
<td>0.0001 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Recoverable Metals by ICPMS, Batch R102805, Continued

Blank (R102805-BLK1), Continued
Prepared: Sep-08-11, Analyzed: Sep-09-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% REC Limits</th>
<th>% RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manganese</td>
<td>< 0.005</td>
<td>0.005 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>< 0.0001</td>
<td>0.0001 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>< 0.005</td>
<td>0.005 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td>< 0.005</td>
<td>0.005 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beryllium</td>
<td>< 0.0001</td>
<td>0.0001 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bismuth</td>
<td>< 0.0001</td>
<td>0.0001 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boron</td>
<td>< 0.004</td>
<td>0.004 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>< 0.00001</td>
<td>0.00001 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>< 0.5</td>
<td>0.5 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>< 0.0005</td>
<td>0.0005 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cobalt</td>
<td>< 0.00005</td>
<td>0.00005 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>< 0.002</td>
<td>0.0002 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>< 0.01</td>
<td>0.01 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>< 0.0001</td>
<td>0.0001 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithium</td>
<td>< 0.0001</td>
<td>0.0001 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>< 0.01</td>
<td>0.01 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>< 0.0002</td>
<td>0.0002 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>< 0.00002</td>
<td>0.00002 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molybdenum</td>
<td>< 0.0001</td>
<td>0.0001 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>< 0.0002</td>
<td>0.0002 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus</td>
<td>< 0.02</td>
<td>0.02 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>< 0.02</td>
<td>0.02 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selenium</td>
<td>< 0.0005</td>
<td>0.0005 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silicon</td>
<td>< 0.5</td>
<td>0.5 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td>< 0.00005</td>
<td>0.00005 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>< 0.02</td>
<td>0.02 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strontium</td>
<td>< 0.001</td>
<td>0.001 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tellurium</td>
<td>< 0.0002</td>
<td>0.0002 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thorium</td>
<td>< 0.0001</td>
<td>0.0001 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin</td>
<td>< 0.0002</td>
<td>0.0002 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Titanium</td>
<td>< 0.005</td>
<td>0.005 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uranium</td>
<td>0.00002</td>
<td>0.00002 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanadium</td>
<td>< 0.001</td>
<td>0.001 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>< 0.004</td>
<td>0.004 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zirconium</td>
<td>< 0.0001</td>
<td>0.0001 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reference (R102805-SRM1)
Prepared: Sep-08-11, Analyzed: Sep-09-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Reporting Limit</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>0.307</td>
<td>0.005 mg/L</td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>0.0496</td>
<td>0.0001 mg/L</td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>0.125</td>
<td>0.0005 mg/L</td>
<td></td>
</tr>
</tbody>
</table>
QUALITY CONTROL DATA

TOTAL RECOVERABLE METALS BY ICPMS, BATCH R102805, CONTINUED

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% REC</th>
<th>% RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barium</td>
<td>0.772</td>
<td>mg/L</td>
<td>0.777</td>
<td>99</td>
<td>72-104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beryllium</td>
<td>0.0466</td>
<td>mg/L</td>
<td>0.0468</td>
<td>100</td>
<td>76-131</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>3.49</td>
<td>mg/L</td>
<td>3.40</td>
<td>103</td>
<td>75-121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.0466</td>
<td>mg/L</td>
<td>0.0490</td>
<td>95</td>
<td>89-111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cobalt</td>
<td>10.8</td>
<td>mg/L</td>
<td>10.2</td>
<td>106</td>
<td>86-121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>0.552</td>
<td>mg/L</td>
<td>0.487</td>
<td>113</td>
<td>91-115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cobalt</td>
<td>0.25</td>
<td>mg/L</td>
<td>0.233</td>
<td>102</td>
<td>76-131</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>0.552</td>
<td>mg/L</td>
<td>0.487</td>
<td>113</td>
<td>91-115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>0.52</td>
<td>mg/L</td>
<td>0.469</td>
<td>111</td>
<td>77-124</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>0.207</td>
<td>mg/L</td>
<td>0.193</td>
<td>107</td>
<td>92-113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithium</td>
<td>0.410</td>
<td>mg/L</td>
<td>0.390</td>
<td>105</td>
<td>85-115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>3.52</td>
<td>mg/L</td>
<td>3.31</td>
<td>106</td>
<td>78-120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>0.111</td>
<td>mg/L</td>
<td>0.109</td>
<td>102</td>
<td>90-114</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>0.00557</td>
<td>mg/L</td>
<td>0.00456</td>
<td>122</td>
<td>50-150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molybdenum</td>
<td>0.194</td>
<td>mg/L</td>
<td>0.197</td>
<td>98</td>
<td>90-111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>0.252</td>
<td>mg/L</td>
<td>0.242</td>
<td>104</td>
<td>90-111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus</td>
<td>0.214</td>
<td>mg/L</td>
<td>0.233</td>
<td>91</td>
<td>85-115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>6.38</td>
<td>mg/L</td>
<td>5.93</td>
<td>108</td>
<td>84-113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selenium</td>
<td>0.117</td>
<td>mg/L</td>
<td>0.115</td>
<td>102</td>
<td>85-115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strontium</td>
<td>8.20</td>
<td>mg/L</td>
<td>7.64</td>
<td>107</td>
<td>82-123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thallium</td>
<td>0.348</td>
<td>mg/L</td>
<td>0.363</td>
<td>96</td>
<td>88-112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uranium</td>
<td>0.0183</td>
<td>mg/L</td>
<td>0.0192</td>
<td>95</td>
<td>85-120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanadium</td>
<td>0.385</td>
<td>mg/L</td>
<td>0.376</td>
<td>102</td>
<td>86-111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>2.60</td>
<td>mg/L</td>
<td>2.42</td>
<td>107</td>
<td>85-111</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REFERENCE (R102805-SRM1), CONTINUED

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% REC</th>
<th>% RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>0.311</td>
<td>mg/L</td>
<td>0.296</td>
<td>105</td>
<td>81-129</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>0.0482</td>
<td>mg/L</td>
<td>0.0505</td>
<td>95</td>
<td>88-114</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>0.21</td>
<td>mg/L</td>
<td>0.233</td>
<td>97</td>
<td>88-114</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td>0.777</td>
<td>mg/L</td>
<td>0.777</td>
<td>100</td>
<td>72-104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beryllium</td>
<td>0.0466</td>
<td>mg/L</td>
<td>0.0468</td>
<td>102</td>
<td>76-131</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boron</td>
<td>3.58</td>
<td>mg/L</td>
<td>3.40</td>
<td>105</td>
<td>75-121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.0465</td>
<td>mg/L</td>
<td>0.0490</td>
<td>95</td>
<td>89-111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>11.0</td>
<td>mg/L</td>
<td>10.2</td>
<td>108</td>
<td>86-121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>0.256</td>
<td>mg/L</td>
<td>0.242</td>
<td>106</td>
<td>89-114</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cobalt</td>
<td>0.0396</td>
<td>mg/L</td>
<td>0.0366</td>
<td>108</td>
<td>91-113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>0.552</td>
<td>mg/L</td>
<td>0.487</td>
<td>113</td>
<td>91-115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>0.52</td>
<td>mg/L</td>
<td>0.469</td>
<td>112</td>
<td>77-124</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>0.207</td>
<td>mg/L</td>
<td>0.193</td>
<td>107</td>
<td>92-113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithium</td>
<td>0.430</td>
<td>mg/L</td>
<td>0.390</td>
<td>110</td>
<td>85-115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>3.57</td>
<td>mg/L</td>
<td>3.31</td>
<td>108</td>
<td>78-120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>0.112</td>
<td>mg/L</td>
<td>0.109</td>
<td>103</td>
<td>90-114</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>0.00483</td>
<td>mg/L</td>
<td>0.00456</td>
<td>106</td>
<td>50-150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molybdenum</td>
<td>0.193</td>
<td>mg/L</td>
<td>0.197</td>
<td>98</td>
<td>90-111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>0.258</td>
<td>mg/L</td>
<td>0.242</td>
<td>107</td>
<td>90-111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus</td>
<td>0.20</td>
<td>mg/L</td>
<td>0.233</td>
<td>87</td>
<td>85-115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>6.47</td>
<td>mg/L</td>
<td>5.93</td>
<td>109</td>
<td>84-113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selenium</td>
<td>0.111</td>
<td>mg/L</td>
<td>0.115</td>
<td>97</td>
<td>85-115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>8.31</td>
<td>mg/L</td>
<td>7.64</td>
<td>109</td>
<td>82-123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strontium</td>
<td>0.347</td>
<td>mg/L</td>
<td>0.363</td>
<td>96</td>
<td>88-112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thallium</td>
<td>0.0828</td>
<td>mg/L</td>
<td>0.0794</td>
<td>104</td>
<td>91-114</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uranium</td>
<td>0.0185</td>
<td>mg/L</td>
<td>0.0192</td>
<td>97</td>
<td>85-120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanadium</td>
<td>0.396</td>
<td>mg/L</td>
<td>0.376</td>
<td>105</td>
<td>86-111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>2.60</td>
<td>mg/L</td>
<td>2.42</td>
<td>111</td>
<td>85-111</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CERTIFICATE OF ANALYSIS

CLIENT Galena Environmental Ltd.
8075 Upper Galena Farm Road- PO Box 37
Silverton BC TEL 1-250-358-2872
VOG 2B0 FAX 1-250-358-2114

ATTENTION Luce Paquin

RECEIVED / TEMP Sep-30-11 09:45 / 6.0 °C WORK ORDER K111246
REPORTED Oct-07-11 PROJECT Slocan Lake Stewartship Society
COC #: COC no#

General Comments:

Methods not described in these publications are conducted according to procedures accepted by appropriate regulatory agencies, and/or are done in accordance with recognized professional standards using accepted testing methodologies and quality control efforts except where otherwise agreed to by the client.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued unless otherwise agreed to in writing.

- All solids results are reported on a dry weight basis unless otherwise noted
- Units: mg/kg = milligrams per kilogram, equivalent to parts per million (ppm)
 mg/L = milligrams per litre, equivalent to parts per million (ppm)
 ug/L = micrograms per litre, equivalent to parts per billion (ppb)
 ug/g = micrograms per gram, equivalent to parts per million (ppm)
 ug/m³ = micrograms per cubic meter of air
- "RDL" Reported detection limit
- "<" Less than reported detection limit
- "AO" Aesthetic objective
- "MAC" Maximum acceptable concentration (health-related guideline)
- "LAB" RMD = Richmond location, KEL = Kelowna location, EDM = Edmonton location, SUB = Subcontracted

Please contact CARO if more information is needed or to provide feedback on our services.

CARO Analytical Services

Final Review Per: Jennifer Shanko, AScT
Administration Coordinator

CARO Analytical Services

#120 12791 Clarke Place Richmond, BC V6Y 2H9 Tel: 604-279-1499 Fax: 604-279-1599
#102 3677 Highway 97N Kelowna, BC V1X 5C3 Tel: 250-765-9646 Fax: 250-765-3893
#102 3677 Highway 97N Kelowna, BC V1X 5C3
17225 109 Avenue Edmonton, AB T5S 1H7 Tel: 780-489-9100 Fax: 780-489-9700
www.caro.ca
SAMPLE DATA

CLIENT
Galena Environmental Ltd.

PROJECT
Slocan Lake Stewartship Society

WORK ORDER #
K1I1246

REPORTED
Oct-07-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site 1 - 5m (K1I1246-01)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>2.3</td>
<td>0.1</td>
<td>ug/L</td>
<td>Sep-29-11</td>
<td>Oct-05-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.038</td>
<td></td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-01-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.038</td>
<td></td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-01-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td></td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-01-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.34</td>
<td>0.05</td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-07-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.381</td>
<td>0.05</td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-07-11</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>< 0.005</td>
<td>0.05</td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-03-11</td>
<td></td>
</tr>
<tr>
<td>Site 1 - 50m (K1I1246-02)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>1.8</td>
<td>0.1</td>
<td>ug/L</td>
<td>Sep-29-11</td>
<td>Oct-05-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.080</td>
<td></td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-01-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.080</td>
<td></td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-01-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td></td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-01-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.16</td>
<td>0.05</td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-07-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.243</td>
<td>0.05</td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-07-11</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>< 0.005</td>
<td>0.05</td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-03-11</td>
<td></td>
</tr>
<tr>
<td>Site 2 - 5m (K1I1246-03)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>1.1</td>
<td>0.1</td>
<td>ug/L</td>
<td>Sep-29-11</td>
<td>Oct-05-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.030</td>
<td></td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-01-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.030</td>
<td></td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-01-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td></td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-01-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.26</td>
<td>0.05</td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-07-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.290</td>
<td>0.05</td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-07-11</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>< 0.005</td>
<td>0.05</td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-03-11</td>
<td></td>
</tr>
<tr>
<td>Site 2 - 50m (K1I1246-04)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>0.9</td>
<td>0.1</td>
<td>ug/L</td>
<td>Sep-29-11</td>
<td>Oct-05-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.099</td>
<td></td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-01-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.099</td>
<td></td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-01-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td></td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-01-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.28</td>
<td>0.05</td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-07-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.380</td>
<td>0.05</td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-07-11</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>< 0.005</td>
<td>0.05</td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-03-11</td>
<td></td>
</tr>
<tr>
<td>Site 3 - 5m (K1I1246-05)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>1.4</td>
<td>0.1</td>
<td>ug/L</td>
<td>Sep-29-11</td>
<td>Oct-05-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.030</td>
<td></td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-01-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.030</td>
<td></td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-01-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td></td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-01-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.14</td>
<td>0.05</td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-07-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.175</td>
<td>0.05</td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-07-11</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>< 0.005</td>
<td>0.05</td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-03-11</td>
<td></td>
</tr>
<tr>
<td>Site 3 - 50m (K1I1246-06)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>0.9</td>
<td>0.1</td>
<td>ug/L</td>
<td>Sep-29-11</td>
<td>Oct-05-11</td>
<td></td>
</tr>
</tbody>
</table>

CARO Analytical Services
General Parameters, Continued

Site 3 - 50m (K1I1246-06) **Matrix:** Water **Sampled:** Sep-28-11, Continued

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.095</td>
<td>0.01</td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-01-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.095</td>
<td>0.01</td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-01-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-01-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.12</td>
<td>0.05</td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-07-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.210</td>
<td>0.05</td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-07-11</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-03-11</td>
<td></td>
</tr>
</tbody>
</table>

Site 4 - 5m (K1I1246-07) **Matrix:** Water **Sampled:** Sep-28-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>1.2</td>
<td>0.1</td>
<td>ug/L</td>
<td>Sep-29-11</td>
<td>Oct-05-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.027</td>
<td>0.01</td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-01-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.027</td>
<td>0.01</td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-01-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-01-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.18</td>
<td>0.05</td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-07-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.206</td>
<td>0.05</td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-07-11</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-03-11</td>
<td></td>
</tr>
</tbody>
</table>

Site 4 - 50m (K1I1246-08) **Matrix:** Water **Sampled:** Sep-28-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>0.8</td>
<td>0.1</td>
<td>ug/L</td>
<td>Sep-29-11</td>
<td>Oct-05-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.108</td>
<td>0.01</td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-01-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.108</td>
<td>0.01</td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-01-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-01-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.09</td>
<td>0.05</td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-07-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.200</td>
<td>0.05</td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-07-11</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>Sep-30-11</td>
<td>Oct-03-11</td>
<td></td>
</tr>
<tr>
<td>Analysis Description</td>
<td>Method Reference(s) (* = modified from)</td>
<td>LAB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-A</td>
<td>N/A</td>
<td>KEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrate by IC</td>
<td>N/A</td>
<td>KEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrite by IC</td>
<td>N/A</td>
<td>KEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Nitrogen (TKN + NO3-N+NO2-N)</td>
<td>Calc</td>
<td>KEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>EPA 351.2 *</td>
<td>KEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total (persulfate)</td>
<td>APHA 4500-P B.5</td>
<td>KEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
QUALITY CONTROL DATA

The following section reports quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with quality control samples that ensure your data is of the highest quality. Common QC types include:

- **Method Blank (Blk):** Laboratory reagent water is carried through sample preparation and analysis steps. Method Blanks indicate that results are free from contamination, i.e. not biased high from sources such as the sample container or the laboratory environment.

- **Duplicate (Dup):** Preparation and analysis of a replicate aliquot of a sample. Duplicates provide a measure of the analytical method's precision, i.e. how reproducible a result is. Duplicates are only reported if they are associated with your sample data.

- **Blank Spike (BS):** A known amount of standard is carried through sample preparation and analysis steps. Blank Spikes, also known as laboratory control samples (LCS), are prepared from a different source of standard than used for the calibration. They ensure that the calibration is acceptable (i.e. not biased high or low) and also provide a measure of the analytical method's accuracy (i.e. closeness of the result to a target value).

- **Standard Reference Material (SRM):** A material of similar matrix to the samples, externally certified for the parameter(s) listed. Standard Reference Materials ensure that the preparation steps in the method are adequate to achieve acceptable recoveries of the parameter(s) tested for.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% REC Limits</th>
<th>% RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>< 0.1</td>
<td>ug/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General Parameters, Batch K104177

Blank (K104177-BLK1)

| Nitrogen, Nitrate as N | < 0.005 | mg/L |
| Nitrogen, Nitrite as N | < 0.005 | mg/L |

Blank (K104211-BLK1)
Prepared: Sep-30-11, Analyzed: Sep-30-11

| Nitrogen, Nitrate as N | < 0.005 | mg/L |
| Nitrogen, Nitrite as N | < 0.005 | mg/L |

Blank (K104211-BLK2)
Prepared: Sep-30-11, Analyzed: Sep-30-11

| Nitrogen, Nitrate as N | < 0.005 | mg/L |
| Nitrogen, Nitrite as N | < 0.005 | mg/L |

Blank (K104211-BLK3)
Prepared: Sep-30-11, Analyzed: Sep-30-11

| Nitrogen, Nitrate as N | < 0.005 | mg/L |
| Nitrogen, Nitrite as N | < 0.005 | mg/L |

Blank (K104211-BLK4)

| Nitrogen, Nitrate as N | < 0.005 | mg/L |
| Nitrogen, Nitrite as N | < 0.005 | mg/L |

Blank (K104211-BLK5)

| Nitrogen, Nitrate as N | < 0.005 | mg/L |
| Nitrogen, Nitrite as N | < 0.005 | mg/L |

LCS (K104211-BS1)
Prepared: Sep-30-11, Analyzed: Sep-30-11

| Nitrogen, Nitrate as N | 4.35 | mg/L |
| Nitrogen, Nitrite as N | 3.77 | mg/L |

LCS (K104211-BS2)
Prepared: Sep-30-11, Analyzed: Sep-30-11

| Nitrogen, Nitrate as N | 4.35 | mg/L |
| Nitrogen, Nitrite as N | 3.75 | mg/L |

LCS (K104211-BS3)
Prepared: Sep-30-11, Analyzed: Sep-30-11

| Nitrogen, Nitrate as N | 4.30 | mg/L |
| Nitrogen, Nitrite as N | 3.78 | mg/L |

LCS (K104211-BS4)

| Nitrogen, Nitrate as N | 4.36 | mg/L |
| Nitrogen, Nitrite as N | 3.75 | mg/L |
QUALITY CONTROL DATA

CLIENT
Galena Environmental Ltd.

PROJECT
Slocan Lake Stewardship Society

WORK ORDER #
K111246

REPORTED
Oct-07-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Reporting Limit</th>
<th>Reporting Units</th>
<th>Spike Limit</th>
<th>Spike Units</th>
<th>Source</th>
<th>Result % REC</th>
<th>% REC Limits</th>
<th>% RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Parameters, Batch K104211, Continued</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS (K104211-BS5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>4.58</td>
<td>0.005 mg/L</td>
<td>4.00</td>
<td>115</td>
<td>85-115</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>3.75</td>
<td>0.005 mg/L</td>
<td>4.00</td>
<td>94</td>
<td>85-115</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duplicate (K104211-DUP5)</td>
<td>Source: K111246-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.036</td>
<td>0.005 mg/L</td>
<td>0.038</td>
<td>5</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.005</td>
<td>0.005 mg/L</td>
<td>< 0.005</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Parameters, Batch K104215</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (K104215-BLK1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>< 0.005</td>
<td>0.005 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS (K104215-BS1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>0.453</td>
<td>0.025 mg/L</td>
<td>0.500</td>
<td>91</td>
<td>75-112</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duplicate (K104215-DUP1)</td>
<td>Source: K111246-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>< 0.005</td>
<td>0.005 mg/L</td>
<td>< 0.005</td>
<td></td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Parameters, Batch K104281</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (K104281-BLK1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>< 0.05</td>
<td>0.05 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (K104281-BLK2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>< 0.05</td>
<td>0.05 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (K104281-BLK3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>< 0.05</td>
<td>0.05 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS (K104281-BS1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>10.4</td>
<td>0.05 mg/L</td>
<td>10.0</td>
<td>104</td>
<td>89-116</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS (K104281-BS2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>10.5</td>
<td>0.05 mg/L</td>
<td>10.0</td>
<td>105</td>
<td>89-116</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS (K104281-BS3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>9.49</td>
<td>0.05 mg/L</td>
<td>10.0</td>
<td>95</td>
<td>89-116</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duplicate (K104281-DUP2)</td>
<td>Source: K111246-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.15</td>
<td>0.05 mg/L</td>
<td>0.14</td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CERTIFICATE OF ANALYSIS

CLIENT
Galena Environmental Ltd.
8075 Upper Galena Farm Road- PO Box 37
Silverton BC
TEL 1-250-358-2872
VOG 2B0
FAX 1-250-358-2114

ATTENTION
Luce Paquin

RECEIVED / TEMP
Oct-27-11 09:45 / 8.0 °C
REPORTED
Nov-03-11
COC #(#s)
33259/33260

WORK ORDER
K1J1030
PROJECT
Slocan Lake Stewardship Society

General Comments:

Methods not described in these publications are conducted according to procedures accepted by appropriate regulatory agencies, and/or are done in accordance with recognized professional standards using accepted testing methodologies and quality control efforts except where otherwise agreed to by the client.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued unless otherwise agreed to in writing.

- All solids results are reported on a dry weight basis unless otherwise noted
- Units:
 - mg/kg = milligrams per kilogram, equivalent to parts per million (ppm)
 - mg/L = milligrams per litre, equivalent to parts per million (ppm)
 - ug/L = micrograms per litre, equivalent to parts per billion (ppb)
 - ug/g = micrograms per gram, equivalent to parts per million (ppm)
 - ug/m³ = micrograms per cubic meter of air
- "RDL" Reported detection limit
- "<" Less than reported detection limit
- "AO" Aesthetic objective
- "MAC" Maximum acceptable concentration (health-related guideline)
- "LAB" RMD = Richmond location, KEL = Kelowna location, EDM = Edmonton location, SUB = Subcontracted

Please contact CARO if more information is needed or to provide feedback on our services.

CARO Analytical Services

Final Review Per: Jennifer Shanko, AScT
Administration Coordinator

CARO Analytical Services
#120 12791 Clarke Place
Richmond, BC V6V 2H9
Tel: 604-279-1499 Fax: 604-279-1599

#102 3677 Highway 97N
Kelowna, BC V1X 5C3
Tel: 250-765-9646 Fax: 250-765-3893

17225 109 Avenue
Edmonton, AB T5S 1H7
Tel: 780-489-9100 Fax: 780-489-9700

www.caro.ca
Sample Data

General Parameters

Site 1 - 5m (K1J1030-01)
Matrix: Water
Sampled: Oct-25-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>1.4</td>
<td>0.1</td>
<td>ug/L</td>
<td>Oct-27-11</td>
<td>Nov-02-11</td>
<td>PRES</td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.039</td>
<td>0.01</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.039</td>
<td>0.01</td>
<td>mg/L</td>
<td>Oct-27-11</td>
<td>Oct-29-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td>Oct-27-11</td>
<td>Oct-29-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.18</td>
<td>0.05</td>
<td>mg/L</td>
<td>Oct-27-11</td>
<td>Oct-27-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.223</td>
<td>0.05</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>Oct-27-11</td>
<td>Nov-03-11</td>
<td></td>
</tr>
</tbody>
</table>

Site 1 - 50m (K1J1030-02)
Matrix: Water
Sampled: Oct-25-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>1.3</td>
<td>0.1</td>
<td>ug/L</td>
<td>Oct-27-11</td>
<td>Nov-02-11</td>
<td>PRES</td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.043</td>
<td>0.01</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.043</td>
<td>0.01</td>
<td>mg/L</td>
<td>Oct-27-11</td>
<td>Oct-29-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td>Oct-27-11</td>
<td>Oct-29-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.20</td>
<td>0.05</td>
<td>mg/L</td>
<td>Oct-27-11</td>
<td>Oct-27-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.246</td>
<td>0.05</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>Oct-27-11</td>
<td>Nov-03-11</td>
<td></td>
</tr>
</tbody>
</table>

Site 2 - 5m (K1J1030-03)
Matrix: Water
Sampled: Oct-25-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>1.4</td>
<td>0.1</td>
<td>ug/L</td>
<td>Oct-27-11</td>
<td>Nov-02-11</td>
<td>PRES</td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.039</td>
<td>0.01</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.039</td>
<td>0.01</td>
<td>mg/L</td>
<td>Oct-27-11</td>
<td>Oct-29-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td>Oct-27-11</td>
<td>Oct-29-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.34</td>
<td>0.05</td>
<td>mg/L</td>
<td>Oct-27-11</td>
<td>Oct-27-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.377</td>
<td>0.05</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>Oct-27-11</td>
<td>Nov-03-11</td>
<td></td>
</tr>
</tbody>
</table>

Site 2 - 50m (K1J1030-04)
Matrix: Water
Sampled: Oct-25-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.098</td>
<td>0.01</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.098</td>
<td>0.01</td>
<td>mg/L</td>
<td>Oct-27-11</td>
<td>Oct-29-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td>Oct-27-11</td>
<td>Oct-29-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.47</td>
<td>0.05</td>
<td>mg/L</td>
<td>Oct-27-11</td>
<td>Oct-27-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.569</td>
<td>0.05</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>Oct-27-11</td>
<td>Nov-03-11</td>
<td></td>
</tr>
</tbody>
</table>

Site 3 - 5m (K1J1030-05)
Matrix: Water
Sampled: Oct-25-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>1.4</td>
<td>0.1</td>
<td>ug/L</td>
<td>Oct-27-11</td>
<td>Nov-02-11</td>
<td>PRES</td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.032</td>
<td>0.01</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.032</td>
<td>0.01</td>
<td>mg/L</td>
<td>Oct-27-11</td>
<td>Oct-29-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td>Oct-27-11</td>
<td>Oct-29-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.16</td>
<td>0.05</td>
<td>mg/L</td>
<td>Oct-27-11</td>
<td>Oct-27-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.194</td>
<td>0.05</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>Oct-27-11</td>
<td>Nov-03-11</td>
<td></td>
</tr>
</tbody>
</table>

Site 3 - 50m (K1J1030-06)
Matrix: Water
Sampled: Oct-25-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>1.1</td>
<td>0.1</td>
<td>ug/L</td>
<td>Oct-27-11</td>
<td>Nov-02-11</td>
<td>PRES</td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.099</td>
<td>0.01</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>
General Parameters, Continued

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site 3 - 50m (K1J1030-06) Matrix: Water</td>
<td>Sampled: Oct-25-11, Continued</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.099</td>
<td>0.010</td>
<td>mg/L</td>
<td>Oct-27-11</td>
<td>Oct-29-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.01</td>
<td>0.01</td>
<td>mg/L</td>
<td>Oct-27-11</td>
<td>Oct-29-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.12</td>
<td>0.05</td>
<td>mg/L</td>
<td>Oct-27-11</td>
<td>Oct-27-11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.222</td>
<td>0.050</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>Oct-27-11</td>
<td>Nov-03-11</td>
<td></td>
</tr>
</tbody>
</table>

Site 4 - 5m (K1J1030-07) Matrix: Water	Sampled: Oct-25-11					
Chlorophyll-a	1.2	0.1	ug/L	Oct-27-11	Nov-02-11	PRES
Nitrogen, Nitrate+Nitrite as N	0.036	0.010	mg/L	N/A	N/A	
Nitrogen, Nitrate as N	0.036	0.010	mg/L	Oct-27-11	Oct-29-11	
Nitrogen, Nitrite as N	< 0.01	0.01	mg/L	Oct-27-11	Oct-29-11	
Nitrogen, Total Kjeldahl	0.18	0.05	mg/L	Oct-27-11	Oct-27-11	
Nitrogen, Total	0.216	0.050	mg/L	N/A	N/A	
Phosphorus, Total	< 0.005	0.005	mg/L	Oct-27-11	Nov-03-11	

Site 4 - 50m (K1J1030-08) Matrix: Water	Sampled: Oct-25-11					
Chlorophyll-a	1.3	0.1	ug/L	Oct-27-11	Nov-02-11	PRES
Nitrogen, Nitrate+Nitrite as N	0.100	0.010	mg/L	N/A	N/A	
Nitrogen, Nitrate as N	0.100	0.010	mg/L	Oct-27-11	Oct-29-11	
Nitrogen, Nitrite as N	< 0.01	0.01	mg/L	Oct-27-11	Oct-29-11	
Nitrogen, Total Kjeldahl	0.17	0.05	mg/L	Oct-27-11	Oct-27-11	
Nitrogen, Total	0.272	0.050	mg/L	N/A	N/A	
Phosphorus, Total	< 0.005	0.005	mg/L	Oct-27-11	Nov-03-11	

Sample Qualifiers:

- **PRES** Sample has been Preserved
Analysis / Report Information

CLIENT
Galena Environmental Ltd.

PROJECT
Slocan Lake Stewardship Society

WORK ORDER #
K1J1030

REPORTED
Nov-03-11

<table>
<thead>
<tr>
<th>Analysis Description</th>
<th>Method Reference(s) (* = modified from)</th>
<th>LAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-A</td>
<td>N/A</td>
<td>KEL</td>
</tr>
<tr>
<td>Nitrate by IC</td>
<td>N/A</td>
<td>KEL</td>
</tr>
<tr>
<td>Nitrite by IC</td>
<td>N/A</td>
<td>KEL</td>
</tr>
<tr>
<td>Total Nitrogen (TKN + NO3-N+NO2-N)</td>
<td>EPA 351.2 *</td>
<td>KEL</td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>EPA 351.2 *</td>
<td>KEL</td>
</tr>
<tr>
<td>Phosphorus, Total (persulfate)</td>
<td>APHA 4500-P B.5</td>
<td>KEL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Preparation</th>
<th>Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>APHA 10200H</td>
</tr>
<tr>
<td></td>
<td>APHA 4110 B</td>
</tr>
<tr>
<td></td>
<td>APHA 4110 B</td>
</tr>
<tr>
<td></td>
<td>Calc</td>
</tr>
<tr>
<td></td>
<td>EPA 351.2 *</td>
</tr>
<tr>
<td></td>
<td>APHA 4500P:B.5/E</td>
</tr>
</tbody>
</table>
The following section reports quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with quality control samples that ensure your data is of the highest quality. Common QC types include:

- **Method Blank (Blk):** Laboratory reagent water is carried through sample preparation and analysis steps. Method Blanks indicate that results are free from contamination, i.e. not biased high from sources such as the sample container or the laboratory environment.

- **Duplicate (Dup):** Preparation and analysis of a replicate aliquot of a sample. Duplicates provide a measure of the analytical method's precision, i.e. how reproducible a result is. Duplicates are only reported if they are associated with your sample data.

- **Blank Spike (BS):** A known amount of standard is carried through sample preparation and analysis steps. Blank Spikes, also known as laboratory control samples (LCS), are prepared from a different source of standard than used for the calibration. They ensure that the calibration is acceptable (i.e. not biased high or low) and also provide a measure of the analytical method's accuracy (i.e. closeness of the result to a target value).

- **Standard Reference Material (SRM):** A material of similar matrix to the samples, externally certified for the parameter(s) listed. Standard Reference Materials ensure that the preparation steps in the method are adequate to achieve acceptable recoveries of the parameter(s) tested for.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Reporting Result</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% REC Limits</th>
<th>% RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Parameters, Batch K104694</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (K104694-BLK1)</td>
<td>Prepared: Oct-27-11, Analyzed: Nov-02-11</td>
<td>< 0.1</td>
<td>0.1 ug/L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Parameters, Batch K104737</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (K104737-BLK1)</td>
<td>Prepared: Oct-28-11, Analyzed: Oct-29-11</td>
<td>< 0.010</td>
<td>0.010 mg/L</td>
<td>Nitrogen, Nitrate as N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (K104737-BLK2)</td>
<td>Prepared: Oct-28-11, Analyzed: Oct-29-11</td>
<td>< 0.010</td>
<td>0.010 mg/L</td>
<td>Nitrogen, Nitrate as N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (K104737-BLK3)</td>
<td>Prepared: Oct-28-11, Analyzed: Oct-29-11</td>
<td>< 0.010</td>
<td>0.010 mg/L</td>
<td>Nitrogen, Nitrite as N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (K104737-BLK4)</td>
<td>Prepared: Oct-28-11, Analyzed: Oct-29-11</td>
<td>< 0.010</td>
<td>0.010 mg/L</td>
<td>Nitrogen, Nitrate as N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (K104737-BLK5)</td>
<td>Prepared: Oct-28-11, Analyzed: Oct-29-11</td>
<td>< 0.010</td>
<td>0.010 mg/L</td>
<td>Nitrogen, Nitrate as N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (K104737-BLK6)</td>
<td>Prepared: Oct-28-11, Analyzed: Oct-30-11</td>
<td>< 0.010</td>
<td>0.010 mg/L</td>
<td>Nitrogen, Nitrate as N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (K104737-BLK7)</td>
<td>Prepared: Oct-28-11, Analyzed: Oct-31-11</td>
<td>< 0.010</td>
<td>0.010 mg/L</td>
<td>Nitrogen, Nitrate as N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS (K104737-BS1)</td>
<td>Prepared: Oct-28-11, Analyzed: Oct-29-11</td>
<td>4.26</td>
<td>0.010 mg/L</td>
<td>Nitrogen, Nitrate as N</td>
<td>4.00</td>
<td>106</td>
</tr>
<tr>
<td>LCS (K104737-BS2)</td>
<td>Prepared: Oct-28-11, Analyzed: Oct-29-11</td>
<td>4.33</td>
<td>0.010 mg/L</td>
<td>Nitrogen, Nitrate as N</td>
<td>4.00</td>
<td>108</td>
</tr>
</tbody>
</table>
QUALITY CONTROL DATA

CLIENT
Galena Environmental Ltd.

PROJECT
Slocan Lake Stewardship Society

WORK ORDER #
K1J1030

REPORTED
Nov-03-11

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Source</th>
<th>Result</th>
<th>% REC</th>
<th>% RPD</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>Duplicate (K104737-DUP4)</td>
<td>Source: K1J1030-05</td>
<td>0.039</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>Duplicate (K104790-DUP1)</td>
<td>Source: K1J1030-01</td>
<td>0.032</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>Blank (K104790-BLK1)</td>
<td>Prepared: Nov-02-11, Analyzed: Nov-02-11</td>
<td>< 0.05</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>Blank (K104790-BLK2)</td>
<td>Prepared: Nov-02-11, Analyzed: Nov-02-11</td>
<td>< 0.05</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>LCS (K104790-BS1)</td>
<td>Prepared: Nov-02-11, Analyzed: Nov-02-11</td>
<td>11.0</td>
<td>110 89-116</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>LCS (K104790-BS2)</td>
<td>Prepared: Nov-02-11, Analyzed: Nov-02-11</td>
<td>10.4</td>
<td>104 89-116</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>Duplicate (K104790-DUP1)</td>
<td>Source: K1J1030-01</td>
<td>0.14</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>Blank (K104813-BLK1)</td>
<td>Prepared: Nov-02-11, Analyzed: Nov-03-11</td>
<td>< 0.005</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>LCS (K104813-BS1)</td>
<td>Prepared: Nov-02-11, Analyzed: Nov-03-11</td>
<td>0.517</td>
<td>103 75-112</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>Duplicate (K104813-DUP1)</td>
<td>Source: K1J1030-05</td>
<td>< 0.005</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>
CERTIFICATE OF ANALYSIS

CLIENT
Galena Environmental Ltd.
8075 Upper Galena Farm Road - PO Box 37
Silverton BC
VOG 2B0
TEL 1-250-358-2872
FAX (250) 358-2114

ATTENTION
Luce Paquin

RECEIVED / TEMP WORK ORDER
May-09-12 09:30 / 7.0 °C 2050503
REPORTED PROJECT
May-16-12 Slocan Lake Stewartship Society
COC #(s) 15545

General Comments:

Methods not described in these publications are conducted according to procedures accepted by appropriate regulatory agencies, and/or are done in accordance with recognized professional standards using accepted testing methodologies and quality control efforts except where otherwise agreed to by the client.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued unless otherwise agreed to in writing.

- All solids results are reported on a dry weight basis unless otherwise noted
- Units: mg/kg = milligrams per kilogram, equivalent to parts per million (ppm)
 mg/L = milligrams per litre, equivalent to parts per million (ppm)
 ug/L = micrograms per litre, equivalent to parts per billion (ppb)
 ug/g = micrograms per gram, equivalent to parts per million (ppm)
 ug/m3 = micrograms per cubic meter of air
- "RDL" Reported detection limit
- "<" Less than reported detection limit
- "AO" Aesthetic objective
- "MAC" Maximum acceptable concentration (health-related guideline)
- "LAB" RMD = Richmond location, KEL = Kelowna location, EDM = Edmonton location, SUB = Subcontracted

Please contact CARO if more information is needed or to provide feedback on our services.

CARO Analytical Services

Final Review Per: Jennifer Shanko, AScT
Administration Coordinator, Kelowna

CARO Analytical Services

Locations:
#120 12791 Clarke Place #102 3677 Highway 97N 17225 109 Avenue
Richmond, BC V6V 2H9 Kelowna, BC V1X 5C3 Edmonton, AB T5S 1H7
Tel: 604-279-1499 Fax: 604-279-1599 Tel: 250-765-9646 Fax: 250-765-3893 Tel: 780-489-9100 Fax: 780-489-9700
www.caro.ca
General Parameters

Site 1 - 5m (2050503-01) **Matrix: Water** **Sampled: May-05-12 10:30**

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>0.8</td>
<td>0.1</td>
<td>ug/L</td>
<td>May-09-12</td>
<td>May-15-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.093</td>
<td>0.020</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.093</td>
<td>0.010</td>
<td>mg/L</td>
<td>May-09-12</td>
<td>May-10-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>May-09-12</td>
<td>May-10-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>< 0.05</td>
<td>0.05</td>
<td>mg/L</td>
<td>May-09-12</td>
<td>May-14-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.093</td>
<td>0.070</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>May-09-12</td>
<td>May-09-12</td>
<td>HT</td>
</tr>
<tr>
<td>Silica, Reactive Total as SiO2</td>
<td>6.56</td>
<td>0.10</td>
<td>mg/L</td>
<td>May-15-12</td>
<td>May-15-12</td>
<td></td>
</tr>
</tbody>
</table>

Site 1 - 50m (2050503-02) **Matrix: Water** **Sampled: May-05-12 10:30**

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>0.4</td>
<td>0.1</td>
<td>ug/L</td>
<td>May-09-12</td>
<td>May-15-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.092</td>
<td>0.020</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.092</td>
<td>0.010</td>
<td>mg/L</td>
<td>May-09-12</td>
<td>May-10-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>May-09-12</td>
<td>May-10-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>< 0.05</td>
<td>0.05</td>
<td>mg/L</td>
<td>May-09-12</td>
<td>May-14-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.092</td>
<td>0.070</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>0.006</td>
<td>0.005</td>
<td>mg/L</td>
<td>May-09-12</td>
<td>May-09-12</td>
<td>HT</td>
</tr>
<tr>
<td>Silica, Reactive Total as SiO2</td>
<td>6.11</td>
<td>0.10</td>
<td>mg/L</td>
<td>May-15-12</td>
<td>May-15-12</td>
<td></td>
</tr>
</tbody>
</table>

Site 2 - 5m (2050503-03) **Matrix: Water** **Sampled: May-05-12 10:00**

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>1</td>
<td>0.1</td>
<td>ug/L</td>
<td>May-09-12</td>
<td>May-15-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.087</td>
<td>0.020</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.087</td>
<td>0.010</td>
<td>mg/L</td>
<td>May-09-12</td>
<td>May-10-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>May-09-12</td>
<td>May-10-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>< 0.05</td>
<td>0.05</td>
<td>mg/L</td>
<td>May-09-12</td>
<td>May-14-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.087</td>
<td>0.070</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>0.006</td>
<td>0.005</td>
<td>mg/L</td>
<td>May-09-12</td>
<td>May-09-12</td>
<td>HT</td>
</tr>
<tr>
<td>Silica, Reactive Total as SiO2</td>
<td>6.19</td>
<td>0.10</td>
<td>mg/L</td>
<td>May-15-12</td>
<td>May-15-12</td>
<td></td>
</tr>
</tbody>
</table>

Site 2 - 50m (2050503-04) **Matrix: Water** **Sampled: May-05-12 10:00**

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>0.4</td>
<td>0.1</td>
<td>ug/L</td>
<td>May-09-12</td>
<td>May-15-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.095</td>
<td>0.020</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.095</td>
<td>0.010</td>
<td>mg/L</td>
<td>May-09-12</td>
<td>May-10-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>May-09-12</td>
<td>May-10-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.06</td>
<td>0.05</td>
<td>mg/L</td>
<td>May-09-12</td>
<td>May-14-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.152</td>
<td>0.070</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>0.006</td>
<td>0.005</td>
<td>mg/L</td>
<td>May-09-12</td>
<td>May-09-12</td>
<td>HT</td>
</tr>
<tr>
<td>Silica, Reactive Total as SiO2</td>
<td>6.15</td>
<td>0.10</td>
<td>mg/L</td>
<td>May-15-12</td>
<td>May-15-12</td>
<td></td>
</tr>
</tbody>
</table>

Site 3 - 5m (2050503-05) **Matrix: Water** **Sampled: May-06-12 09:55**

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>0.6</td>
<td>0.1</td>
<td>ug/L</td>
<td>May-09-12</td>
<td>May-15-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.085</td>
<td>0.020</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.085</td>
<td>0.010</td>
<td>mg/L</td>
<td>May-09-12</td>
<td>May-10-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>May-09-12</td>
<td>May-10-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>< 0.05</td>
<td>0.05</td>
<td>mg/L</td>
<td>May-09-12</td>
<td>May-14-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.085</td>
<td>0.070</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>0.007</td>
<td>0.005</td>
<td>mg/L</td>
<td>May-09-12</td>
<td>May-09-12</td>
<td>HT</td>
</tr>
</tbody>
</table>
SAMPLE DATA

CLIENT
Galena Environmental Ltd.

PROJECT
Slocan Lake Stewardship Society

WORK ORDER #
2050503

REPORTED
May-16-12

General Parameters, Continued

Site 3 - 5m (2050503-05) Matrix: Water
Sampled: May-06-12 09:55, Continued

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica, Reactive Total as SiO2</td>
<td>6.36</td>
<td></td>
<td>0.10 mg/L</td>
<td>May-15-12</td>
<td>May-15-12</td>
<td></td>
</tr>
</tbody>
</table>

Site 3 - 50m (2050503-06) Matrix: Water
Sampled: May-06-12 09:55

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>1</td>
<td></td>
<td>0.1 ug/L</td>
<td>May-09-12</td>
<td>May-15-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.085</td>
<td></td>
<td>0.020 mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.085</td>
<td></td>
<td>0.010 mg/L</td>
<td>May-09-12</td>
<td>May-10-12</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td></td>
<td>0.010 mg/L</td>
<td>May-09-12</td>
<td>May-10-12</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.08</td>
<td></td>
<td>0.05 mg/L</td>
<td>May-09-12</td>
<td>May-14-12</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.167</td>
<td></td>
<td>0.070 mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>0.09</td>
<td></td>
<td>0.005 mg/L</td>
<td>May-09-12</td>
<td>May-09-12</td>
<td></td>
</tr>
<tr>
<td>Silica, Reactive Total as SiO2</td>
<td>6.07</td>
<td></td>
<td>0.10 mg/L</td>
<td>May-15-12</td>
<td>May-15-12</td>
<td></td>
</tr>
</tbody>
</table>

Site 4 - 5m (2050503-07) Matrix: Water
Sampled: May-06-12 09:15

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>1</td>
<td></td>
<td>0.1 ug/L</td>
<td>May-09-12</td>
<td>May-15-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.087</td>
<td></td>
<td>0.020 mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.087</td>
<td></td>
<td>0.010 mg/L</td>
<td>May-09-12</td>
<td>May-10-12</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td></td>
<td>0.010 mg/L</td>
<td>May-09-12</td>
<td>May-10-12</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.07</td>
<td></td>
<td>0.05 mg/L</td>
<td>May-09-12</td>
<td>May-14-12</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.154</td>
<td></td>
<td>0.070 mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>0.006</td>
<td></td>
<td>0.005 mg/L</td>
<td>May-09-12</td>
<td>May-09-12</td>
<td></td>
</tr>
<tr>
<td>Silica, Reactive Total as SiO2</td>
<td>6.40</td>
<td></td>
<td>0.10 mg/L</td>
<td>May-15-12</td>
<td>May-15-12</td>
<td></td>
</tr>
</tbody>
</table>

Site 4 - 50m (2050503-08) Matrix: Water
Sampled: May-06-12 09:15

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>0.9</td>
<td></td>
<td>0.1 ug/L</td>
<td>May-09-12</td>
<td>May-15-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.081</td>
<td></td>
<td>0.020 mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.081</td>
<td></td>
<td>0.010 mg/L</td>
<td>May-09-12</td>
<td>May-10-12</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td></td>
<td>0.010 mg/L</td>
<td>May-09-12</td>
<td>May-10-12</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>< 0.05</td>
<td></td>
<td>0.05 mg/L</td>
<td>May-09-12</td>
<td>May-14-12</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.081</td>
<td></td>
<td>0.070 mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>0.006</td>
<td></td>
<td>0.005 mg/L</td>
<td>May-09-12</td>
<td>May-09-12</td>
<td></td>
</tr>
<tr>
<td>Silica, Reactive Total as SiO2</td>
<td>6.15</td>
<td></td>
<td>0.10 mg/L</td>
<td>May-15-12</td>
<td>May-15-12</td>
<td></td>
</tr>
</tbody>
</table>

Sample Qualifiers:

HT Parameter(s) analyzed outside of the recommended holding time.
<table>
<thead>
<tr>
<th>Analysis Description</th>
<th>Method Reference(s) (* = modified from)</th>
<th>LAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>Kjeldahl Digestion EPA 351.2</td>
<td>KEL</td>
</tr>
<tr>
<td>Reactive Silica (total)</td>
<td>N/A APHA 4500-SiO2 C * EDM</td>
<td>EDM</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>Kjeldahl Digestion APHA 4500P:B.5/F</td>
<td>KEL</td>
</tr>
<tr>
<td>Nitrite-N by IC</td>
<td>N/A APHA 4110 B KEL</td>
<td>KEL</td>
</tr>
<tr>
<td>Nitrate-N by IC</td>
<td>N/A APHA 4110 B KEL</td>
<td>KEL</td>
</tr>
<tr>
<td>Chlorophyll-A</td>
<td>N/A APHA 10200H KEL</td>
<td>KEL</td>
</tr>
</tbody>
</table>
The following section reports quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with quality control samples that ensure your data is of the highest quality. Common QC types include:

- **Method Blank (Blk):** Laboratory reagent water is carried through sample preparation and analysis steps. Method Blanks indicate that results are free from contamination, i.e. not biased high from sources such as the sample container or the laboratory environment.

- **Duplicate (Dup):** Preparation and analysis of a replicate aliquot of a sample. Duplicates provide a measure of the analytical method's precision, i.e. how reproducible a result is. Duplicates are only reported if they are associated with your sample data.

- **Blank Spike (BS):** A known amount of standard is carried through sample preparation and analysis steps. Blank Spikes, also known as laboratory control samples (LCS), are prepared from a different source of standard than used for the calibration. They ensure that the calibration is acceptable (i.e. not biased high or low) and also provide a measure of the analytical method's accuracy (i.e. closeness of the result to a target value).

- **Standard Reference Material (SRM):** A material of similar matrix to the samples, externally certified for the parameter(s) listed. Standard Reference Materials ensure that the preparation steps in the method are adequate to achieve acceptable recoveries of the parameter(s) tested for.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

Analyte Result Reporting Limit Units Spike Source Level Result % REC % REC Limits % RPD % RPD Limit Notes

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% REC</th>
<th>% REC Limits</th>
<th>% RPD</th>
<th>% RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
</table>

General Parameters, Batch B2E0289

Blank (B2E0289-BLK1)
Prepared: May-09-12, Analyzed: May-15-12

<table>
<thead>
<tr>
<th>Chlorophyll-a</th>
<th>Prepared: May-09-12, Analyzed: May-15-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.1</td>
<td>0.1 ug/L</td>
</tr>
</tbody>
</table>

General Parameters, Batch B2E0294

Blank (B2E0294-BLK1)
Prepared: May-09-12, Analyzed: May-09-12

<table>
<thead>
<tr>
<th>Nitrogen, Nitrate as N</th>
<th>Prepared: May-09-12, Analyzed: May-09-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.010</td>
<td>0.010 mg/L</td>
</tr>
</tbody>
</table>

Blank (B2E0294-BLK2)
Prepared: May-09-12, Analyzed: May-09-12

<table>
<thead>
<tr>
<th>Nitrogen, Nitrate as N</th>
<th>Prepared: May-09-12, Analyzed: May-09-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.010</td>
<td>0.010 mg/L</td>
</tr>
</tbody>
</table>

Blank (B2E0294-BLK3)
Prepared: May-09-12, Analyzed: May-10-12

<table>
<thead>
<tr>
<th>Nitrogen, Nitrate as N</th>
<th>Prepared: May-09-12, Analyzed: May-10-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.010</td>
<td>0.010 mg/L</td>
</tr>
</tbody>
</table>

Blank (B2E0294-BLK4)
Prepared: May-09-12, Analyzed: May-10-12

<table>
<thead>
<tr>
<th>Nitrogen, Nitrate as N</th>
<th>Prepared: May-09-12, Analyzed: May-10-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.010</td>
<td>0.010 mg/L</td>
</tr>
</tbody>
</table>

Blank (B2E0294-BLK5)
Prepared: May-09-12, Analyzed: May-10-12

<table>
<thead>
<tr>
<th>Nitrogen, Nitrate as N</th>
<th>Prepared: May-09-12, Analyzed: May-10-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.010</td>
<td>0.010 mg/L</td>
</tr>
</tbody>
</table>

LCS (B2E0294-BS1)
Prepared: May-09-12, Analyzed: May-09-12

<table>
<thead>
<tr>
<th>Nitrogen, Nitrate as N</th>
<th>Prepared: May-09-12, Analyzed: May-09-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.10</td>
<td>0.010 mg/L</td>
</tr>
</tbody>
</table>

LCS (B2E0294-BS2)
Prepared: May-09-12, Analyzed: May-09-12

<table>
<thead>
<tr>
<th>Nitrogen, Nitrate as N</th>
<th>Prepared: May-09-12, Analyzed: May-09-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.42</td>
<td>0.010 mg/L</td>
</tr>
</tbody>
</table>

LCS (B2E0294-BS3)
Prepared: May-09-12, Analyzed: May-10-12

<table>
<thead>
<tr>
<th>Nitrogen, Nitrate as N</th>
<th>Prepared: May-09-12, Analyzed: May-10-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.14</td>
<td>0.010 mg/L</td>
</tr>
</tbody>
</table>

LCS (B2E0294-BS4)
Prepared: May-09-12, Analyzed: May-10-12

<table>
<thead>
<tr>
<th>Nitrogen, Nitrate as N</th>
<th>Prepared: May-09-12, Analyzed: May-10-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.65</td>
<td>0.010 mg/L</td>
</tr>
</tbody>
</table>

LCS (B2E0294-BS5)
Prepared: May-09-12, Analyzed: May-10-12

<table>
<thead>
<tr>
<th>Nitrogen, Nitrate as N</th>
<th>Prepared: May-09-12, Analyzed: May-10-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.09</td>
<td>0.010 mg/L</td>
</tr>
</tbody>
</table>

LCS (B2E0294-BS6)
Prepared: May-09-12, Analyzed: May-10-12

<table>
<thead>
<tr>
<th>Nitrogen, Nitrate as N</th>
<th>Prepared: May-09-12, Analyzed: May-10-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.52</td>
<td>0.010 mg/L</td>
</tr>
</tbody>
</table>
QUALITY CONTROL DATA

CLIENT
Galena Environmental Ltd.

PROJECT
Slocan Lake Stewartship Society

WORK ORDER #
2050503

REPORTED
May-16-12

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Spike Level</th>
<th>Source</th>
<th>% REC Limit</th>
<th>% RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCS (B2E0294-BS5)</td>
<td>Prepared: May-09-12, Analyzed: May-10-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>4.11</td>
<td>0.010 mg/L</td>
<td>4.00</td>
<td>103</td>
<td>85-115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>3.52</td>
<td>0.010 mg/L</td>
<td>4.00</td>
<td>88</td>
<td>85-115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duplicate (B2E0294-DUP4)</td>
<td>Source: 2050503-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.085</td>
<td>0.010 mg/L</td>
<td>0.087</td>
<td>3</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010 mg/L</td>
<td>< 0.010</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General Parameters, Batch B2E0295

Blank (B2E0295-BLK1)	Prepared: May-09-12, Analyzed: May-14-12						
Blank (B2E0295-BLK2)	Prepared: May-09-12, Analyzed: May-14-12						
LCS (B2E0295-BS1)	Prepared: May-09-12, Analyzed: May-14-12						
Nitrogen, Total Kjeldahl	10.1	0.50 mg/L	10.0	101	89-116		
LCS (B2E0295-BS2)	Prepared: May-09-12, Analyzed: May-14-12						
Nitrogen, Total Kjeldahl	10.1	0.50 mg/L	10.0	101	89-116		

General Parameters, Batch B2E0446

Blank (B2E0446-BLK1)	Prepared: May-14-12, Analyzed: May-14-12						
LCS (B2E0446-BS1)	Prepared: May-14-12, Analyzed: May-14-12						
Phosphorus, Total as P	0.48	0.02 mg/L	0.500	95	75-112		
Duplicate (B2E0446-DUP1)	Source: 2050503-01						
Phosphorus, Total as P	0.005	0.005 mg/L	0.005	30			

General Parameters, Batch B2E0460

LCS (B2E0460-BS1)	Prepared: May-15-12, Analyzed: May-15-12						
Silica, Reactive Total as SiO2	4.86	0.10 mg/L	5.00	97	97-107		
Duplicate (B2E0460-DUP1)	Source: 2050503-08						
Silica, Reactive Total as SiO2	6.11	0.10 mg/L	6.15	< 1	20		
CERTIFICATE OF ANALYSIS

CLIENT
Galena Environmental Ltd.
8075 Upper Galena Farm Road - PO Box 37
Silverton BC
V0G 2B0
TEL 1-250-358-2872
FAX (250) 358-2114

ATTENTION
Luce Paquin

RECEIVED / TEMP WORK ORDER
Jun-27-12 09:15 / 6.0 °C 2061519
REPORTED
Jul-05-12
COC #(s)
17404
PROJECT
Slocan Lake Stewartship Society

General Comments:

Methods not described in these publications are conducted according to procedures accepted by appropriate regulatory agencies, and/or are done in accordance with recognized professional standards using accepted testing methodologies and quality control efforts except where otherwise agreed to by the client.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued unless otherwise agreed to in writing.

- All solids results are reported on a dry weight basis unless otherwise noted
- Units: mg/kg = milligrams per kilogram, equivalent to parts per million (ppm)
 mg/L = milligrams per litre, equivalent to parts per million (ppm)
 ug/L = micrograms per litre, equivalent to parts per billion (ppb)
 ug/g = micrograms per gram, equivalent to parts per million (ppm)
 ug/m3 = micrograms per cubic meter of air

- "RDL" Reported detection limit
- "<" Less than reported detection limit
- "AO" Aesthetic objective
- "MAC" Maximum acceptable concentration (health-related guideline)
- "LAB" RMD = Richmond location, KEL = Kelowna location, EDM = Edmonton location, SUB = Subcontracted

Please contact CARO if more information is needed or to provide feedback on our services.

CARO Analytical Services

Final Review Per: Jennifer Shanko, AScT
Administration Coordinator, Kelowna

Locations:

#120 12791 Clarke Place
Richmond, BC V6V 2H9
Tel: 604-279-1499 Fax: 604-279-1599

#102 3677 Highway 97N
Kelowna, BC V1X 5C3
Tel: 250-765-9646 Fax: 250-765-3893

17225 109 Avenue
Edmonton, AB T5S 1H7
Tel: 780-489-9100 Fax: 780-489-9700

www.caro.ca
SAMPLE DATA

CLIENT
Galena Environmental Ltd.

PROJECT
Slocan Lake Stewardship Society

WORK ORDER #
2061519

REPORTED
Jul-05-12

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site 1 - 5m (2061519-01)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>1</td>
<td>0.1</td>
<td>ug/L</td>
<td>Jun-27-12</td>
<td>Jul-05-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.061</td>
<td>0.010</td>
<td>mg/L</td>
<td>Jun-27-12</td>
<td>Jun-28-12</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>Jun-27-12</td>
<td>Jun-28-12</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.10</td>
<td>0.05</td>
<td>mg/L</td>
<td>Jun-27-12</td>
<td>Jun-04-12</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>0.01</td>
<td>0.005</td>
<td>mg/L</td>
<td>Jun-27-12</td>
<td>Jul-05-12</td>
<td></td>
</tr>
<tr>
<td>Silica, Reactive Total as SiO2</td>
<td>5.90</td>
<td>0.10</td>
<td>mg/L</td>
<td>Jun-28-12</td>
<td>Jun-28-12</td>
<td></td>
</tr>
<tr>
<td>Site 1 - 50m (2061519-02)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>0.4</td>
<td>0.1</td>
<td>ug/L</td>
<td>Jun-27-12</td>
<td>Jul-05-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.096</td>
<td>0.010</td>
<td>mg/L</td>
<td>Jun-27-12</td>
<td>Jun-28-12</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>Jun-27-12</td>
<td>Jun-28-12</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.07</td>
<td>0.05</td>
<td>mg/L</td>
<td>Jun-27-12</td>
<td>Jun-04-12</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>0.008</td>
<td>0.005</td>
<td>mg/L</td>
<td>Jun-27-12</td>
<td>Jul-05-12</td>
<td></td>
</tr>
<tr>
<td>Silica, Reactive Total as SiO2</td>
<td>6.10</td>
<td>0.10</td>
<td>mg/L</td>
<td>Jun-28-12</td>
<td>Jun-28-12</td>
<td></td>
</tr>
<tr>
<td>Site 2 - 5m (2061519-03)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>1</td>
<td>0.1</td>
<td>ug/L</td>
<td>Jun-27-12</td>
<td>Jul-05-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.057</td>
<td>0.010</td>
<td>mg/L</td>
<td>Jun-27-12</td>
<td>Jun-28-12</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>Jun-27-12</td>
<td>Jun-28-12</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.24</td>
<td>0.05</td>
<td>mg/L</td>
<td>Jun-27-12</td>
<td>Jul-04-12</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>0.009</td>
<td>0.005</td>
<td>mg/L</td>
<td>Jun-27-12</td>
<td>Jul-05-12</td>
<td></td>
</tr>
<tr>
<td>Silica, Reactive Total as SiO2</td>
<td>5.75</td>
<td>0.10</td>
<td>mg/L</td>
<td>Jun-28-12</td>
<td>Jun-28-12</td>
<td></td>
</tr>
<tr>
<td>Site 2 - 50m (2061519-04)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>0.6</td>
<td>0.1</td>
<td>ug/L</td>
<td>Jun-27-12</td>
<td>Jul-05-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.091</td>
<td>0.010</td>
<td>mg/L</td>
<td>Jun-27-12</td>
<td>Jun-28-12</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>Jun-27-12</td>
<td>Jun-28-12</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.06</td>
<td>0.05</td>
<td>mg/L</td>
<td>Jun-27-12</td>
<td>Jul-04-12</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>0.008</td>
<td>0.005</td>
<td>mg/L</td>
<td>Jun-27-12</td>
<td>Jul-05-12</td>
<td></td>
</tr>
<tr>
<td>Silica, Reactive Total as SiO2</td>
<td>6.06</td>
<td>0.10</td>
<td>mg/L</td>
<td>Jun-28-12</td>
<td>Jun-28-12</td>
<td></td>
</tr>
</tbody>
</table>

Calculated Parameters

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site 1 - 5m (2061519-01)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.061</td>
<td>0.020</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.165</td>
<td>0.070</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Site 1 - 50m (2061519-02)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.096</td>
<td>0.020</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.170</td>
<td>0.070</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Site 2 - 5m (2061519-03)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.057</td>
<td>0.020</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.295</td>
<td>0.070</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Site 2 - 50m (2061519-04)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.091</td>
<td>0.020</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.150</td>
<td>0.070</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Sample Qualifiers:

<table>
<thead>
<tr>
<th>Parameter(s)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT</td>
<td>Parameter(s) analyzed outside of the recommended holding time.</td>
</tr>
<tr>
<td>Analysis Description</td>
<td>Method Reference(s) (* = modified from)</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Total Nitrogen (TKN + NO3-N+NO2-N)</td>
<td>[CALC]</td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>EPA 351.2 *</td>
</tr>
<tr>
<td>Reactive Silica (total)</td>
<td>APHA 4500-SiO2 C *</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>APHA 4500P:B.5/F</td>
</tr>
<tr>
<td>Nitrite-N by IC</td>
<td>APHA 4110 B</td>
</tr>
<tr>
<td>Nitrate-N by IC</td>
<td>APHA 4110 B</td>
</tr>
<tr>
<td>Chlorophyll-A</td>
<td>APHA 10200H</td>
</tr>
</tbody>
</table>
QUALITY CONTROL DATA

CLIENT
Galena Environmental Ltd.

PROJECT
Slocan Lake Stewartship Society

WORK ORDER #
2061519

REPORTED
Jul-05-12

The following section reports quality control (QC) data that is associated with your sample data. Groups of samples are prepared in “batches” and analyzed in conjunction with quality control samples that ensure your data is of the highest quality. Common QC types include:

- **Method Blank (Blk)**: Laboratory reagent water is carried through sample preparation and analysis steps. Method Blanks indicate that results are free from contamination, i.e. not biased high from sources such as the sample container or the laboratory environment.

- **Duplicate (Dup)**: Preparation and analysis of a replicate aliquot of a sample. Duplicates provide a measure of the analytical method’s precision, i.e., how reproducible a result is. Duplicates are only reported if they are associated with your sample data.

- **Blank Spike (BS)**: A known amount of standard is carried through sample preparation and analysis steps. Blank Spikes, also known as laboratory control samples (LCS), are prepared from a different source of standard than used for the calibration. They ensure that the calibration is acceptable (i.e. not biased high or low) and also provide a measure of the analytical method’s accuracy (i.e. closeness of the result to a target value).

- **Standard Reference Material (SRM)**: A material of similar matrix to the samples, externally certified for the parameter(s) listed. Standard Reference Materials ensure that the preparation steps in the method are adequate to achieve acceptable recoveries of the parameter(s) tested for.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% REC Limits</th>
<th>% RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Parameters, Batch B2F1048</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (B2F1048-BLK1)</td>
<td>Prepared: Jun-27-12, Analyzed: Jul-05-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>< 0.1</td>
<td>0.1 ug/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Parameters, Batch B2F1053</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (B2F1053-BLK1)</td>
<td>Prepared: Jun-27-12, Analyzed: Jul-04-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>< 0.05</td>
<td>0.05 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (B2F1053-BLK2)</td>
<td>Prepared: Jun-27-12, Analyzed: Jul-04-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>< 0.05</td>
<td>0.05 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS (B2F1053-BS1)</td>
<td>Prepared: Jun-27-12, Analyzed: Jul-04-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>11.3</td>
<td>0.50 mg/L</td>
<td>10.0</td>
<td>113</td>
<td>89-116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS (B2F1053-BS2)</td>
<td>Prepared: Jun-27-12, Analyzed: Jul-04-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>11.6</td>
<td>0.50 mg/L</td>
<td>10.0</td>
<td>116</td>
<td>89-116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Parameters, Batch B2F1072</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (B2F1072-BLK1)</td>
<td>Prepared: Jun-28-12, Analyzed: Jun-28-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silica, Reactive Total as SiO2</td>
<td>< 0.10</td>
<td>0.10 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS (B2F1072-BS1)</td>
<td>Prepared: Jun-28-12, Analyzed: Jun-28-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silica, Reactive Total as SiO2</td>
<td>4.92</td>
<td>0.10 mg/L</td>
<td>5.00</td>
<td>98</td>
<td>97-107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Parameters, Batch B2F1073</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (B2F1073-BLK1)</td>
<td>Prepared: Jun-28-12, Analyzed: Jul-05-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>< 0.005</td>
<td>0.005 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (B2F1073-BLK2)</td>
<td>Prepared: Jun-28-12, Analyzed: Jul-05-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>< 0.005</td>
<td>0.005 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (B2F1073-BLK3)</td>
<td>Prepared: Jun-28-12, Analyzed: Jul-05-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>< 0.005</td>
<td>0.005 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS (B2F1073-BS1)</td>
<td>Prepared: Jun-28-12, Analyzed: Jul-05-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>0.41</td>
<td>0.02 mg/L</td>
<td>0.500</td>
<td>82</td>
<td>75-112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS (B2F1073-BS2)</td>
<td>Prepared: Jun-28-12, Analyzed: Jul-05-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>0.42</td>
<td>0.02 mg/L</td>
<td>0.500</td>
<td>83</td>
<td>75-112</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
General Parameters, Batch B2F1073, Continued

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Spike Level</th>
<th>Source</th>
<th>% REC Limits</th>
<th>% RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCS (B2F1073-BS3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>0.42</td>
<td>0.02 mg/L</td>
<td>0.500</td>
<td>85</td>
<td>75-112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duplicate (B2F1073-DUP3)</td>
<td>Source: 2061519-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>0.008</td>
<td>0.005 mg/L</td>
<td>0.008</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General Parameters, Batch B2F1076

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Spike Level</th>
<th>Source</th>
<th>% REC Limits</th>
<th>% RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank (B2F1076-BLK1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>< 0.010</td>
<td>0.010 mg/L</td>
<td>< 0.010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010 mg/L</td>
<td>< 0.010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (B2F1076-BLK2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>< 0.010</td>
<td>0.010 mg/L</td>
<td>< 0.010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010 mg/L</td>
<td>< 0.010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS (B2F1076-BS1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>4.18</td>
<td>0.010 mg/L</td>
<td>4.00</td>
<td>105</td>
<td>85-115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>3.85</td>
<td>0.010 mg/L</td>
<td>4.00</td>
<td>96</td>
<td>85-115</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CERTIFICATE OF ANALYSIS

CLIENT
Galena Environmental Ltd.
8075 Upper Galena Farm Road - PO Box 37
Silverton BC
VOG 2B0

TEL 1-250-358-2872
FAX (250) 358-2114

ATTENTION
Luce Paquin

RECEIVED / TEMP WORK ORDER 2080055
REPORTED Aug-08-12 PROJECT Slocan Lake Stewartship Society
COC #(s) 17388

General Comments:

Methods not described in these publications are conducted according to procedures accepted by appropriate regulatory agencies, and/or are done in accordance with recognized professional standards using accepted testing methodologies and quality control efforts except where otherwise agreed to by the client.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued unless otherwise agreed to in writing.

• All solids results are reported on a dry weight basis unless otherwise noted

• Units: mg/kg = milligrams per kilogram, equivalent to parts per million (ppm)
mg/L = milligrams per litre, equivalent to parts per million (ppm)
ug/L = micrograms per litre, equivalent to parts per billion (ppb)
ug/g = micrograms per gram, equivalent to parts per million (ppm)
ug/m3 = micrograms per cubic meter of air

• "RDL" Reported detection limit
• "<" Less than reported detection limit
• "AO" Aesthetic objective
• "MAC" Maximum acceptable concentration (health-related guideline)
• "LAB" RMD = Richmond location, KEL = Kelowna location, EDM = Edmonton location, SUB = Subcontracted

Please contact CARO if more information is needed or to provide feedback on our services.

CARO Analytical Services

Final Review Per: Jennifer Shanko, AScT
Administration Coordinator, Kelowna

Locations:
#110 4011 Viking Way Richmond, BC V6V 2K9 Tel: 604-279-1499 Fax: 604-279-1599
#102 3677 Highway 97N Kelowna, BC V1X 5C3 Tel: 250-765-9646 Fax: 250-765-3893
17225 109 Avenue Edmonton, AB T5S 1H7 Tel: 780-489-9100 Fax: 780-489-9700
www.caro.ca
Analyte Results

<table>
<thead>
<tr>
<th>Site 1 - 5m (2080055-01)</th>
<th>Matrix: Water</th>
<th>Sampled: Jul-29-12 12:30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>0.3</td>
<td>0.1 ug/L</td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.027</td>
<td>0.010 mg/L</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010 mg/L</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.11</td>
<td>0.05 mg/L</td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>< 0.005</td>
<td>0.005 mg/L</td>
</tr>
<tr>
<td>Silica, Reactive Total as SiO2</td>
<td>5.46</td>
<td>0.10 mg/L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site 1 - 50m (2080055-02)</th>
<th>Matrix: Water</th>
<th>Sampled: Jul-29-12 12:30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>0.3</td>
<td>0.1 ug/L</td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.066</td>
<td>0.010 mg/L</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010 mg/L</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.11</td>
<td>0.05 mg/L</td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>0.006</td>
<td>0.005 mg/L</td>
</tr>
<tr>
<td>Silica, Reactive Total as SiO2</td>
<td>6.06</td>
<td>0.10 mg/L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site 2 - 5m (2080055-03)</th>
<th>Matrix: Water</th>
<th>Sampled: Jul-29-12 11:15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>0.4</td>
<td>0.1 ug/L</td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.030</td>
<td>0.010 mg/L</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010 mg/L</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.19</td>
<td>0.05 mg/L</td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>0.006</td>
<td>0.005 mg/L</td>
</tr>
<tr>
<td>Silica, Reactive Total as SiO2</td>
<td>5.54</td>
<td>0.10 mg/L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site 2 - 50m (2080055-04)</th>
<th>Matrix: Water</th>
<th>Sampled: Jul-29-12 11:15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>0.6</td>
<td>0.1 ug/L</td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.074</td>
<td>0.010 mg/L</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010 mg/L</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.32</td>
<td>0.05 mg/L</td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>0.006</td>
<td>0.005 mg/L</td>
</tr>
<tr>
<td>Silica, Reactive Total as SiO2</td>
<td>6.02</td>
<td>0.10 mg/L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site 3 - 5m (2080055-05)</th>
<th>Matrix: Water</th>
<th>Sampled: Jul-30-12 10:35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>1</td>
<td>0.1 ug/L</td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.027</td>
<td>0.010 mg/L</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010 mg/L</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.20</td>
<td>0.05 mg/L</td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>0.006</td>
<td>0.005 mg/L</td>
</tr>
<tr>
<td>Silica, Reactive Total as SiO2</td>
<td>5.54</td>
<td>0.10 mg/L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site 3 - 50m (2080055-06)</th>
<th>Matrix: Water</th>
<th>Sampled: Jul-30-12 10:35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>0.3</td>
<td>0.1 ug/L</td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.072</td>
<td>0.010 mg/L</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010 mg/L</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>< 0.05</td>
<td>0.05 mg/L</td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>0.006</td>
<td>0.005 mg/L</td>
</tr>
<tr>
<td>Silica, Reactive Total as SiO2</td>
<td>6.06</td>
<td>0.10 mg/L</td>
</tr>
<tr>
<td>Analyte</td>
<td>Result</td>
<td>RDL</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---------</td>
<td>-----</td>
</tr>
<tr>
<td>General Parameters, Continued</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site 4 - 5m (2080055-07)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.023</td>
<td>0.010</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.16</td>
<td>0.05</td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>0.009</td>
<td>0.005</td>
</tr>
<tr>
<td>Silica, Reactive Total as SiO2</td>
<td>5.94</td>
<td>0.10</td>
</tr>
<tr>
<td>Site 4 - 50m (2080055-08)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>0.5</td>
<td>0.1</td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.073</td>
<td>0.010</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.14</td>
<td>0.05</td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>0.006</td>
<td>0.005</td>
</tr>
<tr>
<td>Silica, Reactive Total as SiO2</td>
<td>6.06</td>
<td>0.10</td>
</tr>
<tr>
<td>Calculated Parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site 1 - 5m (2080055-01)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.027</td>
<td>0.020</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.133</td>
<td>0.070</td>
</tr>
<tr>
<td>Site 1 - 50m (2080055-02)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.066</td>
<td>0.020</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.176</td>
<td>0.070</td>
</tr>
<tr>
<td>Site 2 - 5m (2080055-03)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.030</td>
<td>0.020</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.220</td>
<td>0.070</td>
</tr>
<tr>
<td>Site 2 - 50m (2080055-04)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.074</td>
<td>0.020</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.392</td>
<td>0.070</td>
</tr>
<tr>
<td>Site 3 - 5m (2080055-05)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.027</td>
<td>0.020</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.227</td>
<td>0.070</td>
</tr>
<tr>
<td>Site 3 - 50m (2080055-06)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.072</td>
<td>0.020</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.072</td>
<td>0.070</td>
</tr>
<tr>
<td>Site 4 - 5m (2080055-07)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.023</td>
<td>0.020</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.179</td>
<td>0.070</td>
</tr>
<tr>
<td>Site 4 - 50m (2080055-08)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.073</td>
<td>0.020</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.211</td>
<td>0.070</td>
</tr>
</tbody>
</table>
Sample Qualifiers:

HT Parameter(s) analyzed outside of the recommended holding time.
ANALYSIS / REPORT INFORMATION

<table>
<thead>
<tr>
<th>Analysis Description</th>
<th>Method Reference(s) (* = modified from)</th>
<th>LAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Nitrogen (TKN + NO3-N+NO2-N)</td>
<td>N/A</td>
<td>KEL</td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>N/A</td>
<td>KEL</td>
</tr>
<tr>
<td>Reactive Silica (total)</td>
<td>N/A</td>
<td>EDM</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>N/A</td>
<td>KEL</td>
</tr>
<tr>
<td>Nitrite-N by IC</td>
<td>N/A</td>
<td>KEL</td>
</tr>
<tr>
<td>Nitrate-N by IC</td>
<td>N/A</td>
<td>KEL</td>
</tr>
<tr>
<td>Chlorophyll-A</td>
<td>N/A</td>
<td>KEL</td>
</tr>
</tbody>
</table>

[CALC] = Calculation

EPA 351.2 *

APHA 4500-SiO2 C *

APHA 4500P:B.5/F

APHA 4110 B

APHA 10200H
The following section reports quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with quality control samples that ensure your data is of the highest quality. Common QC types include:

- **Method Blank (Blk):** Laboratory reagent water is carried through sample preparation and analysis steps. Method Blanks indicate that results are free from contamination, i.e. not biased high from sources such as the sample container or the laboratory environment.

- **Duplicate (Dup):** Preparation and analysis of a replicate aliquot of a sample. Duplicates provide a measure of the analytical method's precision, i.e. how reproducible a result is. Duplicates are only reported if they are associated with your sample data.

- **Blank Spike (BS):** A known amount of standard is carried through sample preparation and analysis steps. Blank Spikes, also known as laboratory control samples (LCS), are prepared from a different source of standard than used for the calibration. They ensure that the calibration is acceptable (i.e. not biased high or low) and also provide a measure of the analytical method's accuracy (i.e. closeness of the result to a target value).

- **Standard Reference Material (SRM):** A material of similar matrix to the samples, externally certified for the parameter(s) listed. Standard Reference Materials ensure that the preparation steps in the method are adequate to achieve acceptable recoveries of the parameter(s) tested for.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

Analyte Reporting Limit Units Spike Level Source Result % REC Limits % RPD Limit Notes

General Parameters, Batch B2H0022

Blank (B2H0022-BLK2)
- Prepared: Aug-01-12, Analyzed: Aug-02-12
- Phosphorus, Total as P: Prepared: Aug-01-12, Analyzed: Aug-02-12

General Parameters, Batch B2H0038

Blank (B2H0038-BLK1)
- Prepared: Aug-01-12, Analyzed: Aug-07-12

Blank (B2H0038-BLK2)
- Prepared: Aug-01-12, Analyzed: Aug-07-12

Blank (B2H0038-BLK3)
- Prepared: Aug-01-12, Analyzed: Aug-07-12

LCS (B2H0038-BS1)
- Prepared: Aug-01-12, Analyzed: Aug-07-12

LCS (B2H0038-BS2)
- Prepared: Aug-01-12, Analyzed: Aug-07-12

LCS (B2H0038-BS3)
- Prepared: Aug-01-12, Analyzed: Aug-07-12

Duplicate (B2H0038-DUP3)
- Prepared: Aug-01-12, Analyzed: Aug-07-12

General Parameters, Batch B2H0042

Blank (B2H0042-BLK1)
- Prepared: Aug-01-12, Analyzed: Aug-01-12

Blank (B2H0042-BLK2)
- Prepared: Aug-01-12, Analyzed: Aug-02-12
- Nitrogen, Nitrate as N: Prepared: Aug-01-12, Analyzed: Aug-02-12
- Nitrogen, Nitrite as N: Prepared: Aug-01-12, Analyzed: Aug-02-12
QUALITY CONTROL DATA

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Reporting Limit</th>
<th>Spike Units</th>
<th>Source Result</th>
<th>% REC Limits</th>
<th>% RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Parameters, Batch B2H0042, Continued</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (B2H0042-BLK3)</td>
<td>Prepared: Aug-01-12, Analyzed: Aug-02-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>< 0.010</td>
<td>0.010 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (B2H0042-BLK4)</td>
<td>Prepared: Aug-01-12, Analyzed: Aug-02-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>< 0.010</td>
<td>0.010 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (B2H0042-BLK5)</td>
<td>Prepared: Aug-01-12, Analyzed: Aug-02-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>< 0.010</td>
<td>0.010 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS (B2H0042-BS1)</td>
<td>Prepared: Aug-01-12, Analyzed: Aug-01-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>3.93</td>
<td>0.010 mg/L</td>
<td>4.00</td>
<td>98</td>
<td>85-115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>3.76</td>
<td>0.010 mg/L</td>
<td>4.00</td>
<td>94</td>
<td>85-115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS (B2H0042-BS2)</td>
<td>Prepared: Aug-01-12, Analyzed: Aug-01-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>4.00</td>
<td>0.010 mg/L</td>
<td>4.00</td>
<td>100</td>
<td>85-115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>3.82</td>
<td>0.010 mg/L</td>
<td>4.00</td>
<td>95</td>
<td>85-115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS (B2H0042-BS3)</td>
<td>Prepared: Aug-01-12, Analyzed: Aug-02-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>4.04</td>
<td>0.010 mg/L</td>
<td>4.00</td>
<td>101</td>
<td>85-115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>3.79</td>
<td>0.010 mg/L</td>
<td>4.00</td>
<td>95</td>
<td>85-115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS (B2H0042-BS4)</td>
<td>Prepared: Aug-01-12, Analyzed: Aug-02-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>4.00</td>
<td>0.010 mg/L</td>
<td>4.00</td>
<td>100</td>
<td>85-115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>3.69</td>
<td>0.010 mg/L</td>
<td>4.00</td>
<td>92</td>
<td>85-115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS (B2H0042-BS5)</td>
<td>Prepared: Aug-01-12, Analyzed: Aug-02-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>4.03</td>
<td>0.010 mg/L</td>
<td>4.00</td>
<td>101</td>
<td>85-115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>3.68</td>
<td>0.010 mg/L</td>
<td>4.00</td>
<td>92</td>
<td>85-115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duplicate (B2H0042-DUP3)</td>
<td>Source: 2080055-06</td>
<td>Prepared: Aug-01-12, Analyzed: Aug-02-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.071</td>
<td>0.010 mg/L</td>
<td>0.072</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010 mg/L</td>
<td>< 0.010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Parameters, Batch B2H0113</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (B2H0113-BLK1)</td>
<td>Prepared: Aug-03-12, Analyzed: Aug-03-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silica, Reactive Total as SiO2</td>
<td>< 0.10</td>
<td>0.10 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS (B2H0113-BS1)</td>
<td>Prepared: Aug-03-12, Analyzed: Aug-03-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silica, Reactive Total as SiO2</td>
<td>4.98</td>
<td>0.10 mg/L</td>
<td>5.00</td>
<td>100</td>
<td>97-107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duplicate (B2H0113-DUP1)</td>
<td>Source: 2080055-05</td>
<td>Prepared: Aug-03-12, Analyzed: Aug-03-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silica, Reactive Total as SiO2</td>
<td>5.58</td>
<td>0.10 mg/L</td>
<td>5.54</td>
<td>< 1</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Parameters, Batch B2H0121</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (B2H0121-BLK1)</td>
<td>Prepared: Aug-01-12, Analyzed: Aug-01-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>< 0.1</td>
<td>0.1 µg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CERTIFICATE OF ANALYSIS

CLIENT
Galena Environmental Ltd.
8075 Upper Galena Farm Road - PO Box 37
Silvertown BC
V0G 2B0

ATTENTION
Luce Paquin

RECEIVED / TEMP
Aug-17-12 13:30 / 31.0 °C

WORK ORDER
2081054

REPORTED
Aug-22-12

PROJECT
Slocan Lake Stewartship Society

COC #(s)
12270

General Comments:

Methods not described in these publications are conducted according to procedures accepted by appropriate regulatory agencies, and/or are done in accordance with recognized professional standards using accepted testing methodologies and quality control efforts except where otherwise agreed to by the client.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued unless otherwise agreed to in writing.

• All solids results are reported on a dry weight basis unless otherwise noted

• Units:
 mg/kg = milligrams per kilogram, equivalent to parts per million (ppm)
 mg/L = milligrams per litre, equivalent to parts per million (ppm)
 ug/L = micrograms per litre, equivalent to parts per billion (ppb)
 ug/g = micrograms per gram, equivalent to parts per million (ppm)
 ug/m3 = micrograms per cubic meter of air

• "RDL" Reported detection limit
• "<" Less than reported detection limit
• "AO" Aesthetic objective
• "MAC" Maximum acceptable concentration (health-related guideline)
• "LAB" RMD = Richmond location, KEL = Kelowna location, EDM = Edmonton location, SUB = Subcontracted

Please contact CARO if more information is needed or to provide feedback on our services.

CARO Analytical Services

Final Review Per: Jennifer Shanko, AScT
Administration Coordinator, Kelowna

Locations:
#110 4011 Viking Way
Richmond, BC V6V 2K9
Tel: 604-279-1499 Fax: 604-279-1599

#102 3677 Highway 97N
Kelowna, BC V1X 5C3
Tel: 250-765-9646 Fax: 250-765-3893

17225 109 Avenue
Edmonton, AB T5S 1H7
Tel: 780-489-9100 Fax: 780-489-9700

www.caro.ca
SAMPLE DATA

CLIENT
- Galena Environmental Ltd.

PROJECT
- Slocan Lake Stewardship Society

WORK ORDER
- #2081054

REPORTED
- Aug-22-12

Analyte Results Table

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculated Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carpenter Creek (2081054-01)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardness, Total (Total as CaCO3)</td>
<td>87.3</td>
<td>0.50</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Total Recoverable Metals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carpenter Creek (2081054-01)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum, total</td>
<td>0.289</td>
<td>0.005</td>
<td>mg/L</td>
<td>Aug-20-12</td>
<td>Aug-20-12</td>
<td></td>
</tr>
<tr>
<td>Antimony, total</td>
<td>0.0005</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Aug-20-12</td>
<td>Aug-20-12</td>
<td></td>
</tr>
<tr>
<td>Arsenic, total</td>
<td>0.0014</td>
<td>0.0005</td>
<td>mg/L</td>
<td>Aug-20-12</td>
<td>Aug-20-12</td>
<td></td>
</tr>
<tr>
<td>Barium, total</td>
<td>0.015</td>
<td>0.005</td>
<td>mg/L</td>
<td>Aug-20-12</td>
<td>Aug-20-12</td>
<td></td>
</tr>
<tr>
<td>Beryllium, total</td>
<td>< 0.0001</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Aug-20-12</td>
<td>Aug-20-12</td>
<td></td>
</tr>
<tr>
<td>Bismuth, total</td>
<td>< 0.0001</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Aug-20-12</td>
<td>Aug-20-12</td>
<td></td>
</tr>
<tr>
<td>Boron, total</td>
<td>< 0.004</td>
<td>0.004</td>
<td>mg/L</td>
<td>Aug-20-12</td>
<td>Aug-20-12</td>
<td></td>
</tr>
<tr>
<td>Cadmium, total</td>
<td>0.00084</td>
<td>0.00001</td>
<td>mg/L</td>
<td>Aug-20-12</td>
<td>Aug-20-12</td>
<td></td>
</tr>
<tr>
<td>Calcium, total</td>
<td>24.7</td>
<td></td>
<td>mg/L</td>
<td>Aug-20-12</td>
<td>Aug-20-12</td>
<td></td>
</tr>
<tr>
<td>Chromium, total</td>
<td>0.0009</td>
<td>0.0005</td>
<td>mg/L</td>
<td>Aug-20-12</td>
<td>Aug-20-12</td>
<td></td>
</tr>
<tr>
<td>Cobalt, total</td>
<td>0.0028</td>
<td>0.00005</td>
<td>mg/L</td>
<td>Aug-20-12</td>
<td>Aug-20-12</td>
<td></td>
</tr>
<tr>
<td>Copper, total</td>
<td>0.0017</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Aug-20-12</td>
<td>Aug-20-12</td>
<td></td>
</tr>
<tr>
<td>Iron, total</td>
<td>0.52</td>
<td></td>
<td>mg/L</td>
<td>Aug-20-12</td>
<td>Aug-20-12</td>
<td></td>
</tr>
<tr>
<td>Lead, total</td>
<td>0.0030</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Aug-20-12</td>
<td>Aug-20-12</td>
<td></td>
</tr>
<tr>
<td>Lithium, total</td>
<td>0.0012</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Aug-20-12</td>
<td>Aug-20-12</td>
<td></td>
</tr>
<tr>
<td>Magnesium, total</td>
<td>6.18</td>
<td></td>
<td>mg/L</td>
<td>Aug-20-12</td>
<td>Aug-20-12</td>
<td></td>
</tr>
<tr>
<td>Manganese, total</td>
<td>0.0200</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Aug-20-12</td>
<td>Aug-20-12</td>
<td></td>
</tr>
<tr>
<td>Mercury, total</td>
<td>< 0.0001</td>
<td>0.00001</td>
<td>mg/L</td>
<td>Aug-20-12</td>
<td>Aug-20-12</td>
<td></td>
</tr>
<tr>
<td>Molybdenum, total</td>
<td>0.0020</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Aug-20-12</td>
<td>Aug-20-12</td>
<td></td>
</tr>
<tr>
<td>Nickel, total</td>
<td>0.0026</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Aug-20-12</td>
<td>Aug-20-12</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, total</td>
<td>< 0.020</td>
<td>0.020</td>
<td>mg/L</td>
<td>Aug-20-12</td>
<td>Aug-20-12</td>
<td></td>
</tr>
<tr>
<td>Potassium, total</td>
<td>0.60</td>
<td></td>
<td>mg/L</td>
<td>Aug-20-12</td>
<td>Aug-20-12</td>
<td></td>
</tr>
<tr>
<td>Selenium, total</td>
<td>0.0015</td>
<td>0.0005</td>
<td>mg/L</td>
<td>Aug-20-12</td>
<td>Aug-20-12</td>
<td></td>
</tr>
<tr>
<td>Silicon, total</td>
<td>3.2</td>
<td></td>
<td>mg/L</td>
<td>Aug-20-12</td>
<td>Aug-20-12</td>
<td></td>
</tr>
<tr>
<td>Silver, total</td>
<td>< 0.00005</td>
<td>0.00005</td>
<td>mg/L</td>
<td>Aug-20-12</td>
<td>Aug-20-12</td>
<td></td>
</tr>
<tr>
<td>Sodium, total</td>
<td>1.34</td>
<td></td>
<td>mg/L</td>
<td>Aug-20-12</td>
<td>Aug-20-12</td>
<td></td>
</tr>
<tr>
<td>Strontium, total</td>
<td>0.211</td>
<td>0.001</td>
<td>mg/L</td>
<td>Aug-20-12</td>
<td>Aug-20-12</td>
<td></td>
</tr>
<tr>
<td>Sulfur, total</td>
<td>5</td>
<td></td>
<td>mg/L</td>
<td>Aug-20-12</td>
<td>Aug-20-12</td>
<td></td>
</tr>
<tr>
<td>Tellurium, total</td>
<td>< 0.0002</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Aug-20-12</td>
<td>Aug-20-12</td>
<td></td>
</tr>
<tr>
<td>Thallium, total</td>
<td>< 0.0002</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Aug-20-12</td>
<td>Aug-20-12</td>
<td></td>
</tr>
<tr>
<td>Thorium, total</td>
<td>< 0.0001</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Aug-20-12</td>
<td>Aug-20-12</td>
<td></td>
</tr>
<tr>
<td>Tin, total</td>
<td>< 0.0002</td>
<td>0.0002</td>
<td>mg/L</td>
<td>Aug-20-12</td>
<td>Aug-20-12</td>
<td></td>
</tr>
<tr>
<td>Titanium, total</td>
<td>0.010</td>
<td>0.005</td>
<td>mg/L</td>
<td>Aug-20-12</td>
<td>Aug-20-12</td>
<td></td>
</tr>
<tr>
<td>Uranium, total</td>
<td>0.00057</td>
<td>0.00002</td>
<td>mg/L</td>
<td>Aug-20-12</td>
<td>Aug-20-12</td>
<td></td>
</tr>
<tr>
<td>Vanadium, total</td>
<td>0.002</td>
<td>0.001</td>
<td>mg/L</td>
<td>Aug-20-12</td>
<td>Aug-20-12</td>
<td></td>
</tr>
<tr>
<td>Zinc, total</td>
<td>0.083</td>
<td>0.004</td>
<td>mg/L</td>
<td>Aug-20-12</td>
<td>Aug-20-12</td>
<td></td>
</tr>
<tr>
<td>Zirconium, total</td>
<td>0.0001</td>
<td>0.0001</td>
<td>mg/L</td>
<td>Aug-20-12</td>
<td>Aug-20-12</td>
<td></td>
</tr>
</tbody>
</table>
Analysis / Report Information

<table>
<thead>
<tr>
<th>Analysis Description</th>
<th>Method Reference(s) (* = modified from)</th>
<th>LAB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Preparation</td>
<td></td>
</tr>
<tr>
<td>Hardness (Calc)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Total Recoverable Metals</td>
<td>APHA 3030E *</td>
<td>RMD</td>
</tr>
<tr>
<td></td>
<td>Analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>APHA 2340 B</td>
<td>RMD</td>
</tr>
<tr>
<td></td>
<td>APHA 3125 B</td>
<td>RMD</td>
</tr>
</tbody>
</table>

Client: Galena Environmental Ltd.
Project: Slocan Lake Stewartship Society
Work Order #: 2081054
Reported: Aug-22-12
The following section reports quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with quality control samples that ensure your data is of the highest quality. Common QC types include:

- **Method Blank (Blk):** Laboratory reagent water is carried through sample preparation and analysis steps. Method Blanks indicate that results are free from contamination, i.e. not biased high from sources such as the sample container or the laboratory environment.

- **Duplicate (Dup):** Preparation and analysis of a replicate aliquot of a sample. Duplicates provide a measure of the analytical method's precision, i.e. how reproducible a result is. Duplicates are only reported if they are associated with your sample data.

- **Blank Spike (BS):** A known amount of standard is carried through sample preparation and analysis steps. Blank Spikes, also known as laboratory control samples (LCS), are prepared from a different source of standard than used for the calibration. They ensure that the calibration is acceptable (i.e. not biased high or low) and also provide a measure of the analytical method's accuracy (i.e. closeness of the result to a target value).

- **Standard Reference Material (SRM):** A material of similar matrix to the samples, externally certified for the parameter(s) listed. Standard Reference Materials ensure that the preparation steps in the method are adequate to achieve acceptable recoveries of the parameter(s) tested for.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

Total Recoverable Metals, Batch B2H0671

Blank (B2H0671-BLK1)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% REC</th>
<th>% REC Limits</th>
<th>% RPD</th>
<th>% RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum, total</td>
<td>< 0.005</td>
<td>0.005 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony, total</td>
<td>< 0.0001</td>
<td>0.0001 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic, total</td>
<td>< 0.0005</td>
<td>0.0005 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium, total</td>
<td>< 0.005</td>
<td>0.005 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beryllium, total</td>
<td>< 0.0001</td>
<td>0.0001 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bismuth, total</td>
<td>< 0.0001</td>
<td>0.0001 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boron, total</td>
<td>< 0.004</td>
<td>0.004 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium, total</td>
<td>< 0.0001</td>
<td>0.0001 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium, total</td>
<td>< 0.2</td>
<td>0.2 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium, total</td>
<td>< 0.0005</td>
<td>0.0005 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cobalt, total</td>
<td>< 0.00005</td>
<td>0.00005 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper, total</td>
<td>< 0.0002</td>
<td>0.0002 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron, total</td>
<td>< 0.01</td>
<td>0.01 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead, total</td>
<td>< 0.0001</td>
<td>0.0001 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithium, total</td>
<td>< 0.0001</td>
<td>0.0001 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium, total</td>
<td>< 0.01</td>
<td>0.01 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganese, total</td>
<td>< 0.0002</td>
<td>0.0002 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury, total</td>
<td>< 0.0001</td>
<td>0.0001 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molybdenum, total</td>
<td>< 0.0001</td>
<td>0.0001 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel, total</td>
<td>< 0.0002</td>
<td>0.0002 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, total</td>
<td>< 0.02</td>
<td>0.02 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium, total</td>
<td>< 0.02</td>
<td>0.02 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selenium, total</td>
<td>< 0.0005</td>
<td>0.0005 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silicon, total</td>
<td>< 0.5</td>
<td>0.5 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver, total</td>
<td>< 0.0005</td>
<td>0.0005 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium, total</td>
<td>< 0.02</td>
<td>0.02 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strontium, total</td>
<td>< 0.001</td>
<td>0.001 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfur, total</td>
<td>< 1</td>
<td>1 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tellurium, total</td>
<td>< 0.0002</td>
<td>0.0002 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thallium, total</td>
<td>< 0.0002</td>
<td>0.0002 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thorium, total</td>
<td>< 0.0001</td>
<td>0.0001 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin, total</td>
<td>< 0.0002</td>
<td>0.0002 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Titanium, total</td>
<td>< 0.005</td>
<td>0.005 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uranium, total</td>
<td>< 0.0002</td>
<td>0.0002 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanadium, total</td>
<td>< 0.001</td>
<td>0.001 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc, total</td>
<td>< 0.004</td>
<td>0.004 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zirconium, total</td>
<td>< 0.0001</td>
<td>0.0001 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reference (B2H0671-SRM1)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% REC</th>
<th>% REC Limits</th>
<th>% RPD</th>
<th>% RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum, total</td>
<td>0.306</td>
<td>0.005 mg/L</td>
<td></td>
<td></td>
<td>0.296</td>
<td>103</td>
<td>81-129</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony, total</td>
<td>0.0519</td>
<td>0.0001 mg/L</td>
<td></td>
<td></td>
<td>0.0505</td>
<td>103</td>
<td>88-114</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic, total</td>
<td>0.112</td>
<td>0.0005 mg/L</td>
<td></td>
<td></td>
<td>0.122</td>
<td>91</td>
<td>88-114</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium, total</td>
<td>0.751</td>
<td>0.005 mg/L</td>
<td></td>
<td></td>
<td>0.777</td>
<td>97</td>
<td>72-104</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
QUALITY CONTROL DATA

CLIENT
Galena Environmental Ltd.

PROJECT
Slocan Lake Stewardship Society

WORK ORDER
2081054

REPORTED
Aug-22-12

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% REC</th>
<th>% REC Limits</th>
<th>% RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Recoverable Metals, Batch B2H0671, Continued</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference (B2H0671-SRM1), Continued</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beryllium, total</td>
<td>0.0048</td>
<td>0.0001 mg/L</td>
<td>0.0488</td>
<td>92</td>
<td>76-131</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boron, total</td>
<td>0.0076</td>
<td>0.0001 mg/L</td>
<td>0.0490</td>
<td>97</td>
<td>89-111</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium, total</td>
<td>0.0040</td>
<td>0.00005 mg/L</td>
<td>0.0366</td>
<td>105</td>
<td>91-113</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium, total</td>
<td>0.0029</td>
<td>0.0002 mg/L</td>
<td>0.0478</td>
<td>86-121</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium, total</td>
<td>0.0028</td>
<td>0.0005 mg/L</td>
<td>0.242</td>
<td>89-114</td>
<td>104</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cobalt, total</td>
<td>0.0019</td>
<td>0.0001 mg/L</td>
<td>0.193</td>
<td>91-115</td>
<td>109</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper, total</td>
<td>0.0019</td>
<td>0.0001 mg/L</td>
<td>0.390</td>
<td>89-114</td>
<td>102</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron, total</td>
<td>0.205</td>
<td>0.01 mg/L</td>
<td>3.31</td>
<td>78-120</td>
<td>106</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead, total</td>
<td>0.136</td>
<td>0.0001 mg/L</td>
<td>0.0109</td>
<td>90-114</td>
<td>105</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithium, total</td>
<td>0.0005</td>
<td>0.0001 mg/L</td>
<td>0.0056</td>
<td>85-115</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium, total</td>
<td>0.0037</td>
<td>0.0002 mg/L</td>
<td>0.192</td>
<td>85-123</td>
<td>105</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganese, total</td>
<td>0.0019</td>
<td>0.0001 mg/L</td>
<td>0.193</td>
<td>90-111</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury, total</td>
<td>0.0019</td>
<td>0.0001 mg/L</td>
<td>0.192</td>
<td>90-111</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molybdenum, total</td>
<td>0.0019</td>
<td>0.0001 mg/L</td>
<td>0.193</td>
<td>90-111</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel, total</td>
<td>0.0024</td>
<td>0.0002 mg/L</td>
<td>0.242</td>
<td>105</td>
<td>90-111</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, total</td>
<td>0.0021</td>
<td>0.0002 mg/L</td>
<td>0.233</td>
<td>85-115</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium, total</td>
<td>0.0020</td>
<td>0.0002 mg/L</td>
<td>0.233</td>
<td>85-115</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selenium, total</td>
<td>0.0011</td>
<td>0.0005 mg/L</td>
<td>0.115</td>
<td>85-115</td>
<td>96</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium, total</td>
<td>0.0081</td>
<td>0.02 mg/L</td>
<td>7.64</td>
<td>82-123</td>
<td>105</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strontium, total</td>
<td>0.0033</td>
<td>0.001 mg/L</td>
<td>0.363</td>
<td>88-112</td>
<td>99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thallium, total</td>
<td>0.0028</td>
<td>0.0002 mg/L</td>
<td>0.0794</td>
<td>91-114</td>
<td>104</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uranium, total</td>
<td>0.0018</td>
<td>0.0002 mg/L</td>
<td>0.0192</td>
<td>85-120</td>
<td>96</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanadium, total</td>
<td>0.0037</td>
<td>0.001 mg/L</td>
<td>0.376</td>
<td>86-111</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc, total</td>
<td>0.0046</td>
<td>0.004 mg/L</td>
<td>2.62</td>
<td>85-111</td>
<td>102</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CERTIFICATE OF ANALYSIS

CLIENT
Galena Environmental Ltd.
8075 Upper Galena Farm Road - PO Box 37
Silvertown BC
VOG 2B0
TEL 1-250-358-2872
FAX (250) 358-2114

ATTENTION
Luce Paquin

RECEIVED / TEMP
Sep-06-12 10:01 / 10.0 °C

REPORTED
Sep-13-12

COC #(s)
12059

WORK ORDER
2090255

PROJECT
Slocan Lake Stewartship Society

General Comments:

Methods not described in these publications are conducted according to procedures accepted by appropriate regulatory agencies, and/or are done in accordance with recognized professional standards using accepted testing methodologies and quality control efforts except where otherwise agreed to by the client.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued unless otherwise agreed to in writing.

• All solids results are reported on a dry weight basis unless otherwise noted

• Units:
 - mg/kg = milligrams per kilogram, equivalent to parts per million (ppm)
 - mg/L = milligrams per litre, equivalent to parts per million (ppm)
 - ug/L = micrograms per litre, equivalent to parts per billion (ppb)
 - ug/g = micrograms per gram, equivalent to parts per million (ppm)
 - ug/m3 = micrograms per cubic meter of air

• "RDL" Reported detection limit
• "<" Less than reported detection limit
• "AO" Aesthetic objective
• "MAC" Maximum acceptable concentration (health-related guideline)
• "LAB" RMD = Richmond location, KEL = Kelowna location, EDM = Edmonton location, SUB = Subcontracted

Please contact CARO if more information is needed or to provide feedback on our services.

CARO Analytical Services

Final Review Per: Jennifer Shanko, ASct
Administration Coordinator, Kelowna

Locations:
#110 4011 Viking Way
Richmond, BC V6V 2K9
Tel: 604-279-1499 Fax: 604-279-1599

#102 3677 Highway 97N
Kelowna, BC V1X 5C3
Tel: 250-765-9646 Fax: 250-765-3893

17225 109 Avenue
Edmonton, AB T5S 1H7
Tel: 780-489-9100 Fax: 780-489-9700

www.caro.ca
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site 1 - 5m (2090255-01)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>0.8</td>
<td>0.1</td>
<td>ug/L</td>
<td>Sep-06-12</td>
<td>Sep-12-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.017</td>
<td>0.010</td>
<td>mg/L</td>
<td>Sep-06-12</td>
<td>Sep-06-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>Sep-06-12</td>
<td>Sep-06-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.14</td>
<td>0.05</td>
<td>mg/L</td>
<td>Sep-06-12</td>
<td>Sep-07-12</td>
<td>HT</td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>0.02</td>
<td>0.005</td>
<td>mg/L</td>
<td>Sep-06-12</td>
<td>Sep-13-12</td>
<td>HT</td>
</tr>
<tr>
<td>Site 1 - 50m (2090255-02)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>0.4</td>
<td>0.1</td>
<td>ug/L</td>
<td>Sep-06-12</td>
<td>Sep-12-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.082</td>
<td>0.010</td>
<td>mg/L</td>
<td>Sep-06-12</td>
<td>Sep-06-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>Sep-06-12</td>
<td>Sep-06-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.10</td>
<td>0.05</td>
<td>mg/L</td>
<td>Sep-06-12</td>
<td>Sep-07-12</td>
<td>HT</td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>0.007</td>
<td>0.005</td>
<td>mg/L</td>
<td>Sep-06-12</td>
<td>Sep-13-12</td>
<td>HT</td>
</tr>
<tr>
<td>Site 2 - 5m (2090255-03)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>0.3</td>
<td>0.1</td>
<td>ug/L</td>
<td>Sep-06-12</td>
<td>Sep-12-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.025</td>
<td>0.010</td>
<td>mg/L</td>
<td>Sep-06-12</td>
<td>Sep-06-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>Sep-06-12</td>
<td>Sep-06-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.15</td>
<td>0.05</td>
<td>mg/L</td>
<td>Sep-06-12</td>
<td>Sep-07-12</td>
<td>HT</td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>0.008</td>
<td>0.005</td>
<td>mg/L</td>
<td>Sep-06-12</td>
<td>Sep-13-12</td>
<td>HT</td>
</tr>
<tr>
<td>Site 2 - 50m (2090255-04)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>0.4</td>
<td>0.1</td>
<td>ug/L</td>
<td>Sep-06-12</td>
<td>Sep-12-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.094</td>
<td>0.010</td>
<td>mg/L</td>
<td>Sep-06-12</td>
<td>Sep-06-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>Sep-06-12</td>
<td>Sep-06-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>< 0.05</td>
<td>0.05</td>
<td>mg/L</td>
<td>Sep-06-12</td>
<td>Sep-07-12</td>
<td>HT</td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>0.007</td>
<td>0.005</td>
<td>mg/L</td>
<td>Sep-06-12</td>
<td>Sep-13-12</td>
<td>HT</td>
</tr>
<tr>
<td>Site 3 - 5m (2090255-05)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>0.1</td>
<td>0.1</td>
<td>ug/L</td>
<td>Sep-06-12</td>
<td>Sep-12-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.029</td>
<td>0.010</td>
<td>mg/L</td>
<td>Sep-06-12</td>
<td>Sep-06-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>Sep-06-12</td>
<td>Sep-06-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.11</td>
<td>0.05</td>
<td>mg/L</td>
<td>Sep-06-12</td>
<td>Sep-07-12</td>
<td>HT</td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>0.007</td>
<td>0.005</td>
<td>mg/L</td>
<td>Sep-06-12</td>
<td>Sep-13-12</td>
<td>HT</td>
</tr>
<tr>
<td>Site 3 - 50m (2090255-06)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>0.3</td>
<td>0.1</td>
<td>ug/L</td>
<td>Sep-06-12</td>
<td>Sep-12-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.082</td>
<td>0.010</td>
<td>mg/L</td>
<td>Sep-06-12</td>
<td>Sep-06-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>Sep-06-12</td>
<td>Sep-06-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.06</td>
<td>0.05</td>
<td>mg/L</td>
<td>Sep-06-12</td>
<td>Sep-07-12</td>
<td>HT</td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>0.007</td>
<td>0.005</td>
<td>mg/L</td>
<td>Sep-06-12</td>
<td>Sep-13-12</td>
<td>HT</td>
</tr>
<tr>
<td>Site 4 - 5m (2090255-07)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>0.7</td>
<td>0.1</td>
<td>ug/L</td>
<td>Sep-06-12</td>
<td>Sep-12-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.023</td>
<td>0.010</td>
<td>mg/L</td>
<td>Sep-06-12</td>
<td>Sep-06-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>Sep-06-12</td>
<td>Sep-06-12</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>< 0.05</td>
<td>0.05</td>
<td>mg/L</td>
<td>Sep-06-12</td>
<td>Sep-07-12</td>
<td>HT</td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>Sep-06-12</td>
<td>Sep-13-12</td>
<td>HT</td>
</tr>
</tbody>
</table>
General Parameters, Continued

<table>
<thead>
<tr>
<th>Site 4 - 50m (2090255-08)</th>
<th>Matrix: Water</th>
<th>Sampled: Sep-03-12 09:00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>0.4</td>
<td>0.1 ug/L</td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.087</td>
<td>0.010 mg/L</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010 mg/L</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>< 0.05</td>
<td>0.05 mg/L</td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>0.007</td>
<td>0.005 mg/L</td>
</tr>
</tbody>
</table>

Calculated Parameters

<table>
<thead>
<tr>
<th>Site 1 - 5m (2090255-01)</th>
<th>Matrix: Water</th>
<th>Sampled: Sep-02-12 14:00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>< 0.020</td>
<td>0.020 mg/L</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.157</td>
<td>0.070 mg/L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site 1 - 50m (2090255-02)</th>
<th>Matrix: Water</th>
<th>Sampled: Sep-02-12 14:00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.082</td>
<td>0.020 mg/L</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.181</td>
<td>0.070 mg/L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site 2 - 5m (2090255-03)</th>
<th>Matrix: Water</th>
<th>Sampled: Sep-02-12 14:00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.025</td>
<td>0.020 mg/L</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.171</td>
<td>0.070 mg/L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site 2 - 50m (2090255-04)</th>
<th>Matrix: Water</th>
<th>Sampled: Sep-02-12 14:00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.094</td>
<td>0.020 mg/L</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.094</td>
<td>0.070 mg/L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site 3 - 5m (2090255-05)</th>
<th>Matrix: Water</th>
<th>Sampled: Sep-03-12 09:00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.029</td>
<td>0.020 mg/L</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.135</td>
<td>0.070 mg/L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site 3 - 50m (2090255-06)</th>
<th>Matrix: Water</th>
<th>Sampled: Sep-03-12 09:00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.082</td>
<td>0.020 mg/L</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.147</td>
<td>0.070 mg/L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site 4 - 5m (2090255-07)</th>
<th>Matrix: Water</th>
<th>Sampled: Sep-03-12 09:00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.023</td>
<td>0.020 mg/L</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>< 0.070</td>
<td>0.070 mg/L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site 4 - 50m (2090255-08)</th>
<th>Matrix: Water</th>
<th>Sampled: Sep-03-12 09:00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.087</td>
<td>0.020 mg/L</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.087</td>
<td>0.070 mg/L</td>
</tr>
</tbody>
</table>

Sample Qualifiers:

HT Parameter(s) analyzed outside of the recommended holding time.
Analysis / Report Information

CLIENT
Galena Environmental Ltd.

PROJECT
Slocan Lake Stewartship Society

WORK ORDER #
2090255

REPORTED
Sep-13-12

<table>
<thead>
<tr>
<th>Analysis Description</th>
<th>Method Reference(s) (* = modified from)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Nitrogen (TKN + NO3-N+NO2-N)</td>
<td>N/A [CALC]</td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>N/A EPA 351.2 *</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>N/A APHA 4500P:B.5/F</td>
</tr>
<tr>
<td>Nitrite-N by IC</td>
<td>N/A APHA 4110 B</td>
</tr>
<tr>
<td>Nitrate-N by IC</td>
<td>N/A APHA 4110 B</td>
</tr>
<tr>
<td>Chlorophyll-A</td>
<td>N/A APHA 10200H</td>
</tr>
</tbody>
</table>

LAB
KEL
QUALITY CONTROL DATA

The following section reports quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with quality control samples that ensure your data is of the highest quality. Common QC types include:

- **Method Blank (Blk):** Laboratory reagent water is carried through sample preparation and analysis steps. Method Blanks indicate that results are free from contamination, i.e. not biased high from sources such as the sample container or the laboratory environment.

- **Duplicate (Dup):** Preparation and analysis of a replicate aliquot of a sample. Duplicates provide a measure of the analytical method’s precision, i.e. how reproducible a result is. Duplicates are only reported if they are associated with your sample data.

- **Blank Spike (BS):** A known amount of standard is carried through sample preparation and analysis steps. Blank Spikes, also known as laboratory control samples (LCS), are prepared from a different source of standard than used for the calibration. They ensure that the calibration is acceptable (i.e. not biased high or low) and also provide a measure of the analytical method’s accuracy (i.e. closeness of the result to a target value).

- **Standard Reference Material (SRM):** A material of similar matrix to the samples, externally certified for the parameter(s) listed. Standard Reference Materials ensure that the preparation steps in the method are adequate to achieve acceptable recoveries of the parameter(s) tested for.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Reporting Limit Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% Rec Limits</th>
<th>% RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
</table>

General Parameters, Batch B2I0149

<table>
<thead>
<tr>
<th>Blank (B2I0149-BLK1)</th>
<th>Prepared: Sep-06-12, Analyzed: Sep-07-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>≤ 0.05, 0.05 mg/L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Blank (B2I0149-BLK2)</th>
<th>Prepared: Sep-06-12, Analyzed: Sep-07-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>≤ 0.05, 0.05 mg/L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Blank (B2I0149-BLK3)</th>
<th>Prepared: Sep-06-12, Analyzed: Sep-07-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>≤ 0.05, 0.05 mg/L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCS (B2I0149-BS1)</th>
<th>Prepared: Sep-06-12, Analyzed: Sep-07-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>9.35, 0.50 mg/L, 10.0, 94-89-116</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCS (B2I0149-BS2)</th>
<th>Prepared: Sep-06-12, Analyzed: Sep-07-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>10.1, 0.50 mg/L, 10.0, 101-89-116</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCS (B2I0149-BS3)</th>
<th>Prepared: Sep-06-12, Analyzed: Sep-07-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>10.0, 0.50 mg/L, 10.0, 100-89-116</td>
</tr>
</tbody>
</table>

General Parameters, Batch B2I0172

<table>
<thead>
<tr>
<th>Blank (B2I0172-BLK1)</th>
<th>Prepared: Sep-06-12, Analyzed: Sep-12-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>≤ 0.1, 0.1 µg/L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Blank (B2I0172-BLK2)</th>
<th>Prepared: Sep-06-12, Analyzed: Sep-12-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>≤ 0.1, 0.1 µg/L</td>
</tr>
</tbody>
</table>

General Parameters, Batch B2I0173

<table>
<thead>
<tr>
<th>Blank (B2I0173-BLK1)</th>
<th>Prepared: Sep-06-12, Analyzed: Sep-07-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>≤ 0.05, 0.05 mg/L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCS (B2I0173-BS1)</th>
<th>Prepared: Sep-06-12, Analyzed: Sep-07-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>10.1, 0.50 mg/L, 10.0, 101-89-116</td>
</tr>
</tbody>
</table>

General Parameters, Batch B2I0198

<table>
<thead>
<tr>
<th>Blank (B2I0198-BLK1)</th>
<th>Prepared: Sep-06-12, Analyzed: Sep-06-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>≤ 0.010, 0.010 mg/L</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>≤ 0.010, 0.010 mg/L</td>
</tr>
</tbody>
</table>
QUALITY CONTROL DATA

CLIENT
Galena Environmental Ltd.

PROJECT
Slocan Lake Stewartship Society

WORK ORDER
2090255

REPORTED
Sep-13-12

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Spike Level</th>
<th>Source</th>
<th>% REC</th>
<th>% REC Limits</th>
<th>% RPD</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>4.08</td>
<td>0.010</td>
<td>mg/L</td>
<td>4.00</td>
<td>102</td>
<td>85-115</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>3.90</td>
<td>0.010</td>
<td>mg/L</td>
<td>4.00</td>
<td>98</td>
<td>85-115</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>4.26</td>
<td>0.010</td>
<td>mg/L</td>
<td>4.00</td>
<td>107</td>
<td>85-115</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>3.94</td>
<td>0.010</td>
<td>mg/L</td>
<td>4.00</td>
<td>99</td>
<td>85-115</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>4.21</td>
<td>0.010</td>
<td>mg/L</td>
<td>4.00</td>
<td>105</td>
<td>85-115</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>3.92</td>
<td>0.010</td>
<td>mg/L</td>
<td>4.00</td>
<td>98</td>
<td>85-115</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>4.12</td>
<td>0.010</td>
<td>mg/L</td>
<td>4.00</td>
<td>103</td>
<td>85-115</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>3.88</td>
<td>0.010</td>
<td>mg/L</td>
<td>4.00</td>
<td>97</td>
<td>85-115</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>4.13</td>
<td>0.010</td>
<td>mg/L</td>
<td>4.00</td>
<td>103</td>
<td>85-115</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>3.89</td>
<td>0.010</td>
<td>mg/L</td>
<td>4.00</td>
<td>97</td>
<td>85-115</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>0.091</td>
<td>0.010</td>
<td>mg/L</td>
<td>0.094</td>
<td>3</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>< 0.010</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General Parameters, Batch B2I0198, Continued

Blank (B2I0198-BLK2)
Prepared: Sep-06-12, Analyzed: Sep-06-12

Blank (B2I0198-BLK3)
Prepared: Sep-06-12, Analyzed: Sep-06-12

Blank (B2I0198-BLK4)
Prepared: Sep-06-12, Analyzed: Sep-06-12

Blank (B2I0198-BLK5)
Prepared: Sep-06-12, Analyzed: Sep-06-12

LCS (B2I0198-BS1)
Prepared: Sep-06-12, Analyzed: Sep-06-12

LCS (B2I0198-BS2)
Prepared: Sep-06-12, Analyzed: Sep-06-12

LCS (B2I0198-BS3)
Prepared: Sep-06-12, Analyzed: Sep-06-12

LCS (B2I0198-BS4)
Prepared: Sep-06-12, Analyzed: Sep-06-12

LCS (B2I0198-BS5)
Prepared: Sep-06-12, Analyzed: Sep-06-12

Duplicate (B2I0198-DUP3)
Source: 2090255-04
Prepared: Sep-06-12, Analyzed: Sep-06-12

General Parameters, Batch B2I0301

Blank (B2I0301-BLK1)
Prepared: Sep-10-12, Analyzed: Sep-13-12

Blank (B2I0301-BLK2)
Prepared: Sep-10-12, Analyzed: Sep-13-12

LCS (B2I0301-BS1)
Prepared: Sep-10-12, Analyzed: Sep-13-12

LCS (B2I0301-BS2)
Prepared: Sep-10-12, Analyzed: Sep-13-12

Duplicate (B2I0301-DUP1)
Source: 2090255-01
Prepared: Sep-10-12, Analyzed: Sep-13-12

Duplicate (B2I0301-DUP2)
Source: 2090255-08
Prepared: Sep-10-12, Analyzed: Sep-13-12
CERTIFICATE OF ANALYSIS

CLIENT: Galena Environmental Ltd.
8075 Upper Galena Farm Road - PO Box 37
Silverton BC
V0G 2B0

ATTENTION: Luce Paquin

RECEIVED / TEMP WORK ORDER
REPORTED Oct-10-12 PROJECT Slocan Lake Stewartship Society
COC #(s) 11511

General Comments:
CARO Analytical Services employs methods which are based on those found in "Standard Methods for the Examination of Water and Wastewater", 21st Edition, 2005, published by the American Public Health Association (APHA); US EPA protocols found in "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846", 3rd Edition; protocols published by the British Columbia Ministry of Environment (BCMOE); and/or CCME Canada-wide Standard Reference methods. Methods not described in these publications are conducted according to procedures accepted by appropriate regulatory agencies, and/or are done in accordance with recognized professional standards using accepted testing methodologies and quality control efforts except where otherwise agreed to by the client.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued unless otherwise agreed to in writing.

- All solids results are reported on a dry weight basis unless otherwise noted
- Units: mg/kg = milligrams per kilogram, equivalent to parts per million (ppm)
 mg/L = milligrams per litre, equivalent to parts per million (ppm)
 ug/L = micrograms per litre, equivalent to parts per billion (ppb)
 ug/g = micrograms per gram, equivalent to parts per million (ppm)
 ug/m3 = micrograms per cubic meter of air
- "RDL" Reported detection limit
- "<" Less than reported detection limit
- "AO" Aesthetic objective
- "MAC" Maximum acceptable concentration (health-related guideline)
- "LAB" RMD = Richmond location, KEL = Kelowna location, EDM = Edmonton location, SUB = Subcontracted

Please contact CARO if more information is needed or to provide feedback on our services.

CARO Analytical Services
Final Review Per: Jennifer Shanko, AScT
Administration Coordinator, Kelowna

Locations:
#110 4011 Viking Way #102 3677 Highway 97N 17225 109 Avenue
Richmond, BC V6V 2K9 Kelowna, BC V1X 5C3 Edmonton, AB T5S 1H7
Tel: 604-279-1499 Fax: 604-279-1599 Tel: 250-765-9646 Fax: 250-765-3893 Tel: 780-489-9100 Fax: 780-489-9700

www.caro.ca
SAMPLE DATA

General Parameters

<table>
<thead>
<tr>
<th>Site</th>
<th>Matrix: Water</th>
<th>Sampled:</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site 3 - 5m</td>
<td>(2100102-01)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>0.2</td>
<td>0.1</td>
<td>Oct-02-12</td>
<td>Oct-12-10</td>
<td>HT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.010</td>
<td>0.010</td>
<td>Oct-02-12</td>
<td>Oct-12-10</td>
<td>HT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>Oct-02-12</td>
<td>Oct-12-10</td>
<td>HT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.09</td>
<td>0.05</td>
<td>Oct-02-12</td>
<td>Oct-12-10</td>
<td>HT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>0.008</td>
<td>0.005</td>
<td>Oct-02-12</td>
<td>Oct-12-10</td>
<td>HT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site 3 - 50m</td>
<td>(2100102-02)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>0.1</td>
<td>0.1</td>
<td>Oct-02-12</td>
<td>Oct-12-10</td>
<td>HT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.059</td>
<td>0.010</td>
<td>Oct-02-12</td>
<td>Oct-12-10</td>
<td>HT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>Oct-02-12</td>
<td>Oct-12-10</td>
<td>HT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.27</td>
<td>0.05</td>
<td>Oct-02-12</td>
<td>Oct-12-10</td>
<td>HT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>0.013</td>
<td>0.005</td>
<td>Oct-02-12</td>
<td>Oct-12-10</td>
<td>HT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site 4 - 5m</td>
<td>(2100102-03)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>0.1</td>
<td>0.1</td>
<td>Oct-02-12</td>
<td>Oct-12-10</td>
<td>HT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>Oct-02-12</td>
<td>Oct-12-10</td>
<td>HT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>Oct-02-12</td>
<td>Oct-12-10</td>
<td>HT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.09</td>
<td>0.05</td>
<td>Oct-02-12</td>
<td>Oct-12-10</td>
<td>HT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>0.013</td>
<td>0.005</td>
<td>Oct-02-12</td>
<td>Oct-12-10</td>
<td>HT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site 4 - 50m</td>
<td>(2100102-04)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>0.3</td>
<td>0.1</td>
<td>Oct-02-12</td>
<td>Oct-12-10</td>
<td>HT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.053</td>
<td>0.010</td>
<td>Oct-02-12</td>
<td>Oct-12-10</td>
<td>HT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>Oct-02-12</td>
<td>Oct-12-10</td>
<td>HT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.06</td>
<td>0.05</td>
<td>Oct-02-12</td>
<td>Oct-12-10</td>
<td>HT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>0.006</td>
<td>0.005</td>
<td>Oct-02-12</td>
<td>Oct-12-10</td>
<td>HT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calculated Parameters

<table>
<thead>
<tr>
<th>Site</th>
<th>Matrix: Water</th>
<th>Sampled:</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site 3 - 5m</td>
<td>(2100102-01)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>< 0.020</td>
<td>0.020</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.098</td>
<td>0.070</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site 3 - 50m</td>
<td>(2100102-02)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.059</td>
<td>0.020</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.325</td>
<td>0.070</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site 4 - 5m</td>
<td>(2100102-03)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>< 0.020</td>
<td>0.020</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.092</td>
<td>0.070</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site 4 - 50m</td>
<td>(2100102-04)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.053</td>
<td>0.020</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.110</td>
<td>0.070</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample Qualifiers:

HT Parameter(s) analyzed outside of the recommended holding time.
<table>
<thead>
<tr>
<th>Analysis Description</th>
<th>Method Reference(s) (* = modified from)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Preparation</td>
</tr>
<tr>
<td>Total Nitrogen (TKN + NO3-N+NO2-N)</td>
<td>N/A</td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>N/A</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>N/A</td>
</tr>
<tr>
<td>Nitrite-N by IC</td>
<td>N/A</td>
</tr>
<tr>
<td>Nitrate-N by IC</td>
<td>N/A</td>
</tr>
<tr>
<td>Chlorophyll-A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
The following section reports quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with quality control samples that ensure your data is of the highest quality. Common QC types include:

- **Method Blank (Blk):** Laboratory reagent water is carried through sample preparation and analysis steps. Method Blanks indicate that results are free from contamination, i.e. not biased high from sources such as the sample container or the laboratory environment.

- **Duplicate (Dup):** Preparation and analysis of a replicate aliquot of a sample. Duplicates provide a measure of the analytical method's precision, i.e. how reproducible a result is. Duplicates are only reported if they are associated with your sample data.

- **Blank Spike (BS):** A known amount of standard is carried through sample preparation and analysis steps. Blank Spikes, also known as laboratory control samples (LCS), are prepared from a different source of standard than used for the calibration. They ensure that the calibration is acceptable (i.e. not biased high or low) and also provide a measure of the analytical method's accuracy (i.e. closeness of the result to a target value).

- **Standard Reference Material (SRM):** A material of similar matrix to the samples, externally certified for the parameter(s) listed. Standard Reference Materials ensure that the preparation steps in the method are adequate to achieve acceptable recoveries of the parameter(s) tested for.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Reporting Limit Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% REC Limits</th>
<th>% RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
</table>

General Parameters, Batch B2J0079

- **Blank (B2J0079-BLK1)**
 - Nitrogen, Total Kjeldahl
 - Prepared: Oct-02-12, Analyzed: Oct-09-12
 - Result: < 0.05 mg/L
 - Nitrogen, Total Kjeldahl
 - Prepared: Oct-02-12, Analyzed: Oct-09-12
 - Result: < 0.05 mg/L

- **Blank (B2J0079-BLK2)**
 - Nitrogen, Total Kjeldahl
 - Prepared: Oct-02-12, Analyzed: Oct-09-12
 - Result: < 0.05 mg/L
 - Nitrogen, Total Kjeldahl
 - Prepared: Oct-02-12, Analyzed: Oct-09-12
 - Result: < 0.05 mg/L

- **Blank (B2J0079-BLK3)**
 - Nitrogen, Total Kjeldahl
 - Prepared: Oct-02-12, Analyzed: Oct-09-12
 - Result: < 0.05 mg/L
 - Nitrogen, Total Kjeldahl
 - Prepared: Oct-02-12, Analyzed: Oct-09-12
 - Result: < 0.05 mg/L

- **LCS (B2J0079-BS1)**
 - Nitrogen, Total Kjeldahl
 - Prepared: Oct-02-12, Analyzed: Oct-09-12
 - Result: 9.74 mg/L
 - Nitrogen, Total Kjeldahl
 - Prepared: Oct-02-12, Analyzed: Oct-09-12
 - Result: 10.0 mg/L
 - LCS (B2J0079-BS2)
 - Nitrogen, Total Kjeldahl
 - Prepared: Oct-02-12, Analyzed: Oct-09-12
 - Result: 10.0 mg/L
 - Nitrogen, Total Kjeldahl
 - Prepared: Oct-02-12, Analyzed: Oct-09-12
 - Result: 10.0 mg/L
 - LCS (B2J0079-BS3)
 - Nitrogen, Total Kjeldahl
 - Prepared: Oct-02-12, Analyzed: Oct-09-12
 - Result: 10.3 mg/L
 - Nitrogen, Total Kjeldahl
 - Prepared: Oct-02-12, Analyzed: Oct-09-12
 - Result: 10.0 mg/L

General Parameters, Batch B2J0101

- **Blank (B2J0101-BLK1)**
 - Nitrogen, Nitrate as N
 - Prepared: Oct-02-12, Analyzed: Oct-02-12
 - Result: < 0.010 mg/L
 - Nitrogen, Nitrite as N
 - Prepared: Oct-02-12, Analyzed: Oct-02-12
 - Result: < 0.010 mg/L

- **Blank (B2J0101-BLK2)**
 - Nitrogen, Nitrate as N
 - Prepared: Oct-02-12, Analyzed: Oct-02-12
 - Result: < 0.010 mg/L
 - Nitrogen, Nitrite as N
 - Prepared: Oct-02-12, Analyzed: Oct-02-12
 - Result: < 0.010 mg/L

- **Blank (B2J0101-BLK3)**
 - Nitrogen, Nitrate as N
 - Prepared: Oct-02-12, Analyzed: Oct-03-12
 - Result: < 0.010 mg/L
 - Nitrogen, Nitrite as N
 - Prepared: Oct-02-12, Analyzed: Oct-03-12
 - Result: < 0.010 mg/L

- **LCS (B2J0101-BS1)**
 - Nitrogen, Nitrate as N
 - Prepared: Oct-02-12, Analyzed: Oct-02-12
 - Result: 3.91 mg/L
 - Nitrogen, Nitrite as N
 - Prepared: Oct-02-12, Analyzed: Oct-02-12
 - Result: 3.77 mg/L
 - LCS (B2J0101-BS2)
 - Nitrogen, Nitrate as N
 - Prepared: Oct-02-12, Analyzed: Oct-02-12
 - Result: 3.90 mg/L
 - Nitrogen, Nitrite as N
 - Prepared: Oct-02-12, Analyzed: Oct-02-12
 - Result: 3.77 mg/L
 - LCS (B2J0101-BS3)
 - Nitrogen, Nitrate as N
 - Prepared: Oct-02-12, Analyzed: Oct-03-12
 - Result: 3.93 mg/L
 - Nitrogen, Nitrite as N
 - Prepared: Oct-02-12, Analyzed: Oct-03-12
 - Result: 3.77 mg/L
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% REC</th>
<th>% REC Limits</th>
<th>% RPD</th>
<th>% RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCS (B2J0101-BS3), Continued</td>
<td></td>
<td></td>
<td></td>
<td>Prepared: Oct-02-12, Analyzed: Oct-03-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>3.51</td>
<td>0.010 mg/L</td>
<td>4.00</td>
<td>88</td>
<td>85-115</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>< 0.005</td>
<td>0.005 mg/L</td>
<td></td>
<td>0.511</td>
<td>75-112</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>0.511</td>
<td>0.025 mg/L</td>
<td>0.500</td>
<td>102</td>
<td>75-112</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>< 0.1</td>
<td>0.1 ug/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CERTIFICATE OF ANALYSIS

CLIENT Galena Environmental Ltd.
8075 Upper Galena Farm Road - PO Box 37
Silverton BC
VOG 2B0

TEL 1-250-358-2872
FAX (250) 358-2114

ATTENTION Luce Paquin

RECEIVED / TEMP Oct-10-12 10:00 / 3.0 °C
REPORTED Oct-22-12
COC #(s) 15544

WORK ORDER 2100544
PROJECT Slocan Lake Stewartship Society

General Comments:

Methods not described in these publications are conducted according to procedures accepted by appropriate regulatory agencies, and/or are done in accordance with recognized professional standards using accepted testing methodologies and quality control efforts except where otherwise agreed to by the client.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued unless otherwise agreed to in writing.

• All solids results are reported on a dry weight basis unless otherwise noted
• Units: mg/kg = milligrams per kilogram, equivalent to parts per million (ppm)
 mg/L = milligrams per litre, equivalent to parts per million (ppm)
 ug/L = micrograms per litre, equivalent to parts per billion (ppb)
 ug/g = micrograms per gram, equivalent to parts per million (ppm)
 ug/m3 = micrograms per cubic meter of air

• "RDL" Reported detection limit
• "<" Less than reported detection limit
• "AO" Aesthetic objective
• "MAC" Maximum acceptable concentration (health-related guideline)
• "LAB" RMD = Richmond location, KEL = Kelowna location, EDM = Edmonton location, SUB = Subcontracted

Please contact CARO if more information is needed or to provide feedback on our services.

CARO Analytical Services

Final Review Per: Jennifer Shanko, AScT
Administration Coordinator, Kelowna

Locations:

#110 4011 Viking Way
Richmond, BC V6V 2K9
Tel: 604-279-1499 Fax: 604-279-1599

#102 3677 Highway 97N
Kelowna, BC V1X 5C3
Tel: 250-765-9646 Fax: 250-765-3893

17225 109 Avenue
Edmonton, AB T5S 1H7
Tel: 780-489-9100 Fax: 780-489-9700

www.caro.ca
SAMPLE DATA

CLIENT
Galena Environmental Ltd.

PROJECT
Slocan Lake Stewartship Society

WORK ORDER
2100544

REPORTED
Oct-22-12

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site 1 - 5m (2100544-01)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>0.6</td>
<td>0.1</td>
<td>ug/L</td>
<td>Oct-11-12</td>
<td>Oct-16-12</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>< 0.010</td>
<td></td>
<td>mg/L</td>
<td>Oct-11-12</td>
<td>Oct-11-12</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td></td>
<td>mg/L</td>
<td>Oct-11-12</td>
<td>Oct-11-12</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.16</td>
<td>0.05</td>
<td>mg/L</td>
<td>Oct-10-12</td>
<td>Oct-17-12</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>Oct-10-12</td>
<td>Oct-16-12</td>
<td></td>
</tr>
<tr>
<td>Site 1 - 50m (2100544-02)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>0.6</td>
<td>0.1</td>
<td>ug/L</td>
<td>Oct-11-12</td>
<td>Oct-16-12</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.027</td>
<td></td>
<td>mg/L</td>
<td>Oct-11-12</td>
<td>Oct-11-12</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td></td>
<td>mg/L</td>
<td>Oct-11-12</td>
<td>Oct-11-12</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.09</td>
<td>0.05</td>
<td>mg/L</td>
<td>Oct-10-12</td>
<td>Oct-17-12</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>< 0.005</td>
<td></td>
<td>mg/L</td>
<td>Oct-10-12</td>
<td>Oct-16-12</td>
<td></td>
</tr>
<tr>
<td>Site 2 - 5m (2100544-03)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>< 0.010</td>
<td></td>
<td>mg/L</td>
<td>Oct-11-12</td>
<td>Oct-11-12</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td></td>
<td>mg/L</td>
<td>Oct-11-12</td>
<td>Oct-11-12</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.15</td>
<td>0.05</td>
<td>mg/L</td>
<td>Oct-10-12</td>
<td>Oct-17-12</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>< 0.005</td>
<td></td>
<td>mg/L</td>
<td>Oct-10-12</td>
<td>Oct-16-12</td>
<td></td>
</tr>
<tr>
<td>Site 2 - 50m (2100544-04)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>0.7</td>
<td>0.1</td>
<td>ug/L</td>
<td>Oct-11-12</td>
<td>Oct-16-12</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.022</td>
<td></td>
<td>mg/L</td>
<td>Oct-11-12</td>
<td>Oct-11-12</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td></td>
<td>mg/L</td>
<td>Oct-11-12</td>
<td>Oct-11-12</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.08</td>
<td>0.05</td>
<td>mg/L</td>
<td>Oct-10-12</td>
<td>Oct-17-12</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>0.010</td>
<td>0.005</td>
<td>mg/L</td>
<td>Oct-10-12</td>
<td>Oct-16-12</td>
<td></td>
</tr>
</tbody>
</table>

Calculated Parameters

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RDL</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site 1 - 5m (2100544-01)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>< 0.020</td>
<td></td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.163</td>
<td>0.070</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Site 1 - 50m (2100544-02)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.027</td>
<td>0.020</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.118</td>
<td>0.070</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Site 2 - 5m (2100544-03)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>< 0.020</td>
<td>0.020</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.149</td>
<td>0.070</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Site 2 - 50m (2100544-04)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.022</td>
<td>0.020</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.104</td>
<td>0.070</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Analysis Description</td>
<td>Method Reference(s) (* = modified from)</td>
<td>LAB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparation</td>
<td>Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Nitrogen (TKN + NO3-N+NO2-N)</td>
<td>N/A</td>
<td>KEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>N/A</td>
<td>KEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>N/A</td>
<td>KEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrite-N by IC</td>
<td>N/A</td>
<td>KEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrate-N by IC</td>
<td>N/A</td>
<td>KEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-A</td>
<td>N/A</td>
<td>KEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
QUALITY CONTROL DATA

The following section reports quality control (QC) data that is associated with your sample data. Groups of samples are prepared in “batches” and analyzed in conjunction with quality control samples that ensure your data is of the highest quality. Common QC types include:

• Method Blank (Blk): Laboratory reagent water is carried through sample preparation and analysis steps. Method Blanks indicate that results are free from contamination, i.e. not biased high from sources such as the sample container or the laboratory environment.

• Duplicate (Dup): Preparation and analysis of a replicate aliquot of a sample. Duplicates provide a measure of the analytical method’s precision, i.e. how reproducible a result is. Duplicates are only reported if they are associated with your sample data.

• Blank Spike (BS): A known amount of standard is carried through sample preparation and analysis steps. Blank Spikes, also known as laboratory control samples (LCS), are prepared from a different source of standard than used for the calibration. They ensure that the calibration is acceptable (i.e. not biased high or low) and also provide a measure of the analytical method’s accuracy (i.e. closeness of the result to a target value).

• Standard Reference Material (SRM): A material of similar matrix to the samples, externally certified for the parameter(s) listed. Standard Reference Materials ensure that the preparation steps in the method are adequate to achieve acceptable recoveries of the parameter(s) tested for.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

General Parameters, Batch B2J0435

Blank (B2J0435-BLK1)
Prepared: Oct-11-12, Analyzed: Oct-16-12

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Reporting</th>
<th>Spike</th>
<th>Source</th>
<th>% REC</th>
<th>% RPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>< 0.1</td>
<td>0.1</td>
<td>ug/L</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General Parameters, Batch B2J0486

Blank (B2J0486-BLK1)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Reporting</th>
<th>Spike</th>
<th>Source</th>
<th>% REC</th>
<th>% RPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Blank (B2J0486-BLK2)
Prepared: Oct-11-12, Analyzed: Oct-12-12

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Reporting</th>
<th>Spike</th>
<th>Source</th>
<th>% REC</th>
<th>% RPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Blank (B2J0486-BLK3)
Prepared: Oct-11-12, Analyzed: Oct-12-12

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Reporting</th>
<th>Spike</th>
<th>Source</th>
<th>% REC</th>
<th>% RPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Blank (B2J0486-BLK4)
Prepared: Oct-11-12, Analyzed: Oct-12-12

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Reporting</th>
<th>Spike</th>
<th>Source</th>
<th>% REC</th>
<th>% RPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Blank (B2J0486-BLK5)
Prepared: Oct-11-12, Analyzed: Oct-12-12

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Reporting</th>
<th>Spike</th>
<th>Source</th>
<th>% REC</th>
<th>% RPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Blank (B2J0486-BLK6)
Prepared: Oct-11-12, Analyzed: Oct-12-12

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Reporting</th>
<th>Spike</th>
<th>Source</th>
<th>% REC</th>
<th>% RPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LCS (B2J0486-BS1)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Reporting</th>
<th>Spike</th>
<th>Source</th>
<th>% REC</th>
<th>% RPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>4.06</td>
<td>0.010</td>
<td>mg/L</td>
<td>4.00</td>
<td>101</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>3.85</td>
<td>0.010</td>
<td>mg/L</td>
<td>4.00</td>
<td>96</td>
</tr>
</tbody>
</table>

LCS (B2J0486-BS2)
Prepared: Oct-11-12, Analyzed: Oct-12-12

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Reporting</th>
<th>Spike</th>
<th>Source</th>
<th>% REC</th>
<th>% RPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>4.04</td>
<td>0.010</td>
<td>mg/L</td>
<td>4.00</td>
<td>101</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>3.70</td>
<td>0.010</td>
<td>mg/L</td>
<td>4.00</td>
<td>93</td>
</tr>
</tbody>
</table>

LCS (B2J0486-BS3)
Prepared: Oct-11-12, Analyzed: Oct-12-12

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Reporting</th>
<th>Spike</th>
<th>Source</th>
<th>% REC</th>
<th>% RPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>4.03</td>
<td>0.010</td>
<td>mg/L</td>
<td>4.00</td>
<td>101</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>3.61</td>
<td>0.010</td>
<td>mg/L</td>
<td>4.00</td>
<td>90</td>
</tr>
</tbody>
</table>
QUALITY CONTROL DATA

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% REC Limits</th>
<th>% RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>4.02</td>
<td>0.010 mg/L</td>
<td>0.010 mg/L</td>
<td>4.00</td>
<td>100</td>
<td>85-115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>4.05</td>
<td>0.010 mg/L</td>
<td>0.010 mg/L</td>
<td>4.00</td>
<td>101</td>
<td>85-115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>4.02</td>
<td>0.010 mg/L</td>
<td>0.010 mg/L</td>
<td>4.00</td>
<td>100</td>
<td>85-115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>3.80</td>
<td>0.010 mg/L</td>
<td>0.010 mg/L</td>
<td>4.00</td>
<td>95</td>
<td>85-115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>4.09</td>
<td>0.010 mg/L</td>
<td>0.010 mg/L</td>
<td>4.00</td>
<td>102</td>
<td>85-115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>3.78</td>
<td>0.010 mg/L</td>
<td>0.010 mg/L</td>
<td>4.00</td>
<td>94</td>
<td>85-115</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General Parameters, Batch B2J0486, Continued

LCS (B2J0486-BS4)
Prepared: Oct-11-12, Analyzed: Oct-12-12

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% REC Limits</th>
<th>% RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>4.02</td>
<td>0.010 mg/L</td>
<td>0.010 mg/L</td>
<td>4.00</td>
<td>100</td>
<td>85-115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>4.05</td>
<td>0.010 mg/L</td>
<td>0.010 mg/L</td>
<td>4.00</td>
<td>101</td>
<td>85-115</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LCS (B2J0486-BS5)
Prepared: Oct-11-12, Analyzed: Oct-12-12

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% REC Limits</th>
<th>% RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>4.02</td>
<td>0.010 mg/L</td>
<td>0.010 mg/L</td>
<td>4.00</td>
<td>100</td>
<td>85-115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>3.80</td>
<td>0.010 mg/L</td>
<td>0.010 mg/L</td>
<td>4.00</td>
<td>95</td>
<td>85-115</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LCS (B2J0486-BS6)
Prepared: Oct-11-12, Analyzed: Oct-12-12

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% REC Limits</th>
<th>% RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>4.09</td>
<td>0.010 mg/L</td>
<td>0.010 mg/L</td>
<td>4.00</td>
<td>102</td>
<td>85-115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>3.78</td>
<td>0.010 mg/L</td>
<td>0.010 mg/L</td>
<td>4.00</td>
<td>94</td>
<td>85-115</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General Parameters, Batch B2J0516

Blank (B2J0516-BLK1)
Prepared: Oct-12-12, Analyzed: Oct-17-12

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% REC Limits</th>
<th>% RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>< 0.05</td>
<td>0.05 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Blank (B2J0516-BLK2)
Prepared: Oct-12-12, Analyzed: Oct-17-12

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% REC Limits</th>
<th>% RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>< 0.05</td>
<td>0.05 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LCS (B2J0516-BS1)
Prepared: Oct-12-12, Analyzed: Oct-17-12

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% REC Limits</th>
<th>% RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>10.5</td>
<td>0.50 mg/L</td>
<td>10.0</td>
<td></td>
<td>105</td>
<td>89-116</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LCS (B2J0516-BS2)
Prepared: Oct-12-12, Analyzed: Oct-17-12

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% REC Limits</th>
<th>% RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>10.2</td>
<td>0.50 mg/L</td>
<td>10.0</td>
<td></td>
<td>102</td>
<td>89-116</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
REPORTED TO: Slocan Lake Stewardship Society
411 Derosa Drive
New Denver, BC V0G 1S1
TEL 1(250) 358-2590
FAX -

ATTENTION: Sally Hammond
WORK ORDER 3051495

PO NUMBER:
RECEIVED / TEMP: May-28-13 09:45 / 6.0 °C
REPORTED: Jun-04-13
PROJECT INFO:
COC NUMBER: 11512

General Comments:
CARO Analytical Services employs methods which are conducted according to procedures accepted by appropriate regulatory agencies, and/or are conducted in accordance with recognized professional standards using accepted testing methodologies and quality control efforts, except where otherwise agreed to by the client.

The results in this report apply to the samples analyzed in accordance with the Chain of Custody or Sample Requisition document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued unless otherwise agreed to in writing.

Issued By: Jennifer Shanko, AScT
Administration Coordinator, Kelowna

Please contact CARO if more information is needed or to provide feedback on our services.

Locations:

#110 4011 Viking Way
Richmond, BC V6V 2K9
Tel: 604-279-1499 Fax: 604-279-1599

#102 3677 Highway 97N
Kelowna, BC V1X 5C3
Tel: 250-765-9646 Fax: 250-765-3893

don

17225 109 Avenue
Edmonton, AB T5S 1H7
Tel: 780-489-9100 Fax: 780-489-9700

www.caro.ca
Analysis Information

<table>
<thead>
<tr>
<th>Analysis Description</th>
<th>Method Reference</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloride in Water by IC</td>
<td>APHA 4110 B</td>
<td>Kelowna</td>
</tr>
<tr>
<td>Chlorophyll-A</td>
<td>APHA 10200 H (2011)</td>
<td>Kelowna</td>
</tr>
<tr>
<td>Nitrate-N in Water by IC</td>
<td>APHA 4110 B</td>
<td>Kelowna</td>
</tr>
<tr>
<td>Nitrite-N in Water by IC</td>
<td>APHA 4110 B</td>
<td>Kelowna</td>
</tr>
<tr>
<td>Orthophosphate as P by IC</td>
<td>APHA 4110 B</td>
<td>Kelowna</td>
</tr>
<tr>
<td>Phosphorus, Total (persulfate)</td>
<td>APHA 4500-P B.5/F</td>
<td>Kelowna</td>
</tr>
<tr>
<td>Sulfate in Water by IC</td>
<td>APHA 4110 B</td>
<td>Kelowna</td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>EPA 351.2 (1993) *</td>
<td>Kelowna</td>
</tr>
</tbody>
</table>

Note: The numbers in brackets represent the year that the method was published/approved.

Method Reference Descriptions:

- **APHA**
 - Standard Methods for the Examination of Water and Wastewater, American Public Health Association

- **EPA**
 - United States Environmental Protection Agency Test Methods

Glossary of Terms:

- **MRL**
 - Method Reporting Limit

- **<**
 - Less than the Reported Detection Limit (RDL) - the RDL may be higher than the MRL due to various factors such as dilutions, limited sample volume, high moisture, or interferences

- **mg/L**
 - Milligrams per litre

- **ug/L**
 - Micrograms per litre
SAMPLE ANALYTICAL DATA

REPORTED TO
Slocan Lake Stewardship Society

WORK ORDER
3051495

PROJECT
Slocan Lake Stewardship Society

REPORTED
Jun-04-13

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result / Recovery</th>
<th>MRL / Limit</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.070</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>May-28-13</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>May-28-13</td>
<td></td>
</tr>
<tr>
<td>General Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>1</td>
<td>0.1</td>
<td>ug/L</td>
<td>N/A</td>
<td>May-29-13</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.29</td>
<td>0.05</td>
<td>mg/L</td>
<td>May-28-13</td>
<td>May-29-13</td>
<td>HT</td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>May-28-13</td>
<td>Jun-03-13</td>
<td>PRES</td>
</tr>
<tr>
<td>Calculated Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.070</td>
<td>0.020</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.356</td>
<td>0.070</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

Sample ID: Site 1 - 5m (3051495-01) [Water] Sampled: May-25-13 12:00

<table>
<thead>
<tr>
<th>Anions</th>
<th></th>
<th>MRL / Limit</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.080</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>May-28-13</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>May-28-13</td>
<td></td>
</tr>
<tr>
<td>General Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>0.8</td>
<td>0.1</td>
<td>ug/L</td>
<td>N/A</td>
<td>May-29-13</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.27</td>
<td>0.05</td>
<td>mg/L</td>
<td>May-28-13</td>
<td>May-29-13</td>
<td>HT</td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>May-28-13</td>
<td>Jun-03-13</td>
<td>PRES</td>
</tr>
<tr>
<td>Calculated Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.080</td>
<td>0.020</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.350</td>
<td>0.070</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

Sample ID: Site 1 - 50m (3051495-02) [Water] Sampled: May-25-13 12:00

<table>
<thead>
<tr>
<th>Anions</th>
<th></th>
<th>MRL / Limit</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.075</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>May-28-13</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>May-28-13</td>
<td></td>
</tr>
<tr>
<td>General Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>1</td>
<td>0.1</td>
<td>ug/L</td>
<td>N/A</td>
<td>May-29-13</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.19</td>
<td>0.05</td>
<td>mg/L</td>
<td>May-28-13</td>
<td>May-29-13</td>
<td>HT</td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>May-28-13</td>
<td>Jun-03-13</td>
<td>PRES</td>
</tr>
<tr>
<td>Calculated Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.075</td>
<td>0.020</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.261</td>
<td>0.070</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>
Sample Analytical Data

Sample ID: Site 2 - 50m (3051495-04) [Water]
Sampled: May-25-13 13:00

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result / Recovery</th>
<th>MRL / Limit</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.072</td>
<td>0.010 mg/L</td>
<td>N/A</td>
<td>May-28-13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010 mg/L</td>
<td>N/A</td>
<td>May-28-13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>1</td>
<td>0.1 ug/L</td>
<td>N/A</td>
<td>May-29-13</td>
<td>HT</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.19</td>
<td>0.05 mg/L</td>
<td>May-28-13</td>
<td>May-29-13</td>
<td>HT</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>< 0.005</td>
<td>0.005 mg/L</td>
<td>May-28-13</td>
<td>Jun-03-13</td>
<td>PRES</td>
<td></td>
</tr>
<tr>
<td>Calculated Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.072</td>
<td>0.020 mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.264</td>
<td>0.070 mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample ID: Site 3 - 5m (3051495-05) [Water]
Sampled: May-25-13 14:00

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result / Recovery</th>
<th>MRL / Limit</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.075</td>
<td>0.010 mg/L</td>
<td>N/A</td>
<td>May-28-13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010 mg/L</td>
<td>N/A</td>
<td>May-28-13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>1</td>
<td>0.1 ug/L</td>
<td>N/A</td>
<td>May-29-13</td>
<td>HT</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.32</td>
<td>0.05 mg/L</td>
<td>May-28-13</td>
<td>May-29-13</td>
<td>HT</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>< 0.005</td>
<td>0.005 mg/L</td>
<td>May-28-13</td>
<td>Jun-03-13</td>
<td>PRES</td>
<td></td>
</tr>
<tr>
<td>Calculated Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.075</td>
<td>0.020 mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.391</td>
<td>0.070 mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample ID: Site 3 - 50m (3051495-06) [Water]
Sampled: May-25-13 14:00

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result / Recovery</th>
<th>MRL / Limit</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.086</td>
<td>0.010 mg/L</td>
<td>N/A</td>
<td>May-28-13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010 mg/L</td>
<td>N/A</td>
<td>May-28-13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>0.9</td>
<td>0.1 ug/L</td>
<td>N/A</td>
<td>May-29-13</td>
<td>HT</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.05</td>
<td>0.05 mg/L</td>
<td>May-28-13</td>
<td>May-29-13</td>
<td>HT</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>< 0.005</td>
<td>0.005 mg/L</td>
<td>May-28-13</td>
<td>Jun-03-13</td>
<td>PRES</td>
<td></td>
</tr>
<tr>
<td>Calculated Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.086</td>
<td>0.020 mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.139</td>
<td>0.070 mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sample Analytical Data

Sample ID: Site 4 - 5m (3051495-07) [Water] Sampled: May-25-13 15:00

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result / Recovery</th>
<th>MRL / Limit</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.082</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>May-28-13</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>May-28-13</td>
<td></td>
</tr>
<tr>
<td>General Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>1</td>
<td>0.1</td>
<td>ug/L</td>
<td>N/A</td>
<td>May-29-13</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.32</td>
<td>0.05</td>
<td>mg/L</td>
<td>May-28-13</td>
<td>May-29-13</td>
<td>HT</td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>May-28-13</td>
<td>Jun-03-13</td>
<td>PRES</td>
</tr>
<tr>
<td>Calculated Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.082</td>
<td>0.020</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.402</td>
<td>0.070</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

Sample ID: Site 4 - 50m (3051495-08) [Water] Sampled: May-25-13 15:00

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result / Recovery</th>
<th>MRL / Limit</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.081</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>May-28-13</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>May-28-13</td>
<td></td>
</tr>
<tr>
<td>General Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>0.9</td>
<td>0.1</td>
<td>ug/L</td>
<td>N/A</td>
<td>May-29-13</td>
<td>HT</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.42</td>
<td>0.05</td>
<td>mg/L</td>
<td>May-28-13</td>
<td>May-29-13</td>
<td>HT</td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>May-28-13</td>
<td>Jun-03-13</td>
<td>PRES</td>
</tr>
<tr>
<td>Calculated Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.081</td>
<td>0.020</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.497</td>
<td>0.070</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

Sample / Analysis Qualifiers:

- **HT**: Sample prepared / analyzed outside of the recommended holding time.
- **PRES**: Sample has been preserved for in the laboratory and the holding time has been extended.
The following section displays the quality control (QC) data that is associated with your sample data. Groups of samples are prepared in “batches” and analyzed in conjunction with QC samples that ensure your data is of the highest quality. Common QC types include:

- **Method Blank (Blk):** Laboratory reagent water is carried through sample preparation and analysis steps. Method Blanks indicate that results are free from contamination, i.e. not biased high from sources such as the sample container or the laboratory environment.
- **Duplicate (Dup):** Preparation and analysis of a replicate aliquot of a sample. Duplicates provide a measure of the analytical method’s precision, i.e. how reproducible a result is. Duplicates are only reported if they are associated with your sample data.
- **Blank Spike (BS):** A known amount of standard is carried through sample preparation and analysis steps. Blank Spikes, also known as laboratory control samples (LCS), are prepared from a different source of standard than used for the calibration. They ensure that the calibration is acceptable (i.e. not biased high or low) and also provide a measure of the analytical method's accuracy (i.e. closeness of the result to a target value).
- **Standard Reference Material (SRM):** A material of similar matrix to the samples, externally certified for the parameter(s) listed. Standard Reference Materials ensure that the preparation steps in the method are adequate to achieve acceptable recoveries of the parameter(s) tested.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

Analyte Result MRL Units Spike Level Source Result % REC REC Limit RPD RPD Limit Notes

Anions, Batch B3E1112

- **Blank (B3E1112-BLK1)**

- **Blank (B3E1112-BLK2)**

- **Blank (B3E1112-BLK3)**

- **Blank (B3E1112-BLK5)**

- **LCS (B3E1112-BS1)**
 - Nitrogen, Nitrate as N: 3.94 mg/L
 - Nitrogen, Nitrite as N: 1.85 mg/L

- **LCS (B3E1112-BS2)**
 - Nitrogen, Nitrate as N: 3.99 mg/L
 - Nitrogen, Nitrite as N: 1.88 mg/L

- **LCS (B3E1112-BS3)**
 - Nitrogen, Nitrate as N: 3.99 mg/L
 - Nitrogen, Nitrite as N: 1.88 mg/L

- **LCS (B3E1112-BS4)**
 - Nitrogen, Nitrate as N: 3.99 mg/L
 - Nitrogen, Nitrite as N: 1.87 mg/L
Quality Control Data

REPORTED TO
Slocan Lake Stewardship Society

PROJECT
Slocan Lake Stewardship Society

WORK ORDER
3051495

REPORTED
Jun-04-13

Anions, Batch B3E1112, Continued

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>MRL Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% REC</th>
<th>REC Limit</th>
<th>RPD</th>
<th>RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>3.99</td>
<td>0.010 mg/L</td>
<td>4.00</td>
<td>100</td>
<td>85-115</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>1.86</td>
<td>0.010 mg/L</td>
<td>2.00</td>
<td>93</td>
<td>85-115</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Duplicate (B3E1112-DUP5)
Source: 3051495-04
Prepared: May-29-13, Analyzed: May-29-13

<table>
<thead>
<tr>
<th>Nitrogen, Nitrate as N</th>
<th>Result</th>
<th>MRL Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% REC</th>
<th>REC Limit</th>
<th>RPD</th>
<th>RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.076</td>
<td>0.010 mg/L</td>
<td>0.072</td>
<td>4</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010 mg/L</td>
<td>< 0.010</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General Parameters, Batch B3E1086

Blank (B3E1086-BLK1)
Prepared: May-28-13, Analyzed: May-29-13

<table>
<thead>
<tr>
<th>Nitrogen, Total Kjeldahl</th>
<th>Result</th>
<th>MRL Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% REC</th>
<th>REC Limit</th>
<th>RPD</th>
<th>RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 0.05</td>
<td>0.05 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Blank (B3E1086-BLK2)
Prepared: May-28-13, Analyzed: May-29-13

<table>
<thead>
<tr>
<th>Nitrogen, Total Kjeldahl</th>
<th>Result</th>
<th>MRL Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% REC</th>
<th>REC Limit</th>
<th>RPD</th>
<th>RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 0.05</td>
<td>0.05 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Blank (B3E1086-BLK3)
Prepared: May-28-13, Analyzed: May-29-13

<table>
<thead>
<tr>
<th>Nitrogen, Total Kjeldahl</th>
<th>Result</th>
<th>MRL Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% REC</th>
<th>REC Limit</th>
<th>RPD</th>
<th>RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 0.05</td>
<td>0.05 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LCS (B3E1086-BS1)
Prepared: May-28-13, Analyzed: May-29-13

<table>
<thead>
<tr>
<th>Nitrogen, Total Kjeldahl</th>
<th>Result</th>
<th>MRL Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% REC</th>
<th>REC Limit</th>
<th>RPD</th>
<th>RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11.2</td>
<td>0.05 mg/L</td>
<td>10.0</td>
<td>112</td>
<td>89-116</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LCS (B3E1086-BS2)
Prepared: May-28-13, Analyzed: May-29-13

<table>
<thead>
<tr>
<th>Nitrogen, Total Kjeldahl</th>
<th>Result</th>
<th>MRL Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% REC</th>
<th>REC Limit</th>
<th>RPD</th>
<th>RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10.8</td>
<td>0.05 mg/L</td>
<td>10.0</td>
<td>108</td>
<td>89-116</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LCS (B3E1086-BS3)
Prepared: May-28-13, Analyzed: May-29-13

<table>
<thead>
<tr>
<th>Nitrogen, Total Kjeldahl</th>
<th>Result</th>
<th>MRL Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% REC</th>
<th>REC Limit</th>
<th>RPD</th>
<th>RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10.5</td>
<td>0.05 mg/L</td>
<td>10.0</td>
<td>105</td>
<td>89-116</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Duplicate (B3E1086-DUP3)
Source: 3051495-07
Prepared: May-28-13, Analyzed: May-29-13

<table>
<thead>
<tr>
<th>Nitrogen, Total Kjeldahl</th>
<th>Result</th>
<th>MRL Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% REC</th>
<th>REC Limit</th>
<th>RPD</th>
<th>RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.32</td>
<td>0.05 mg/L</td>
<td>0.32</td>
<td>< 1</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General Parameters, Batch B3E1095

Blank (B3E1095-BLK1)
Prepared: May-28-13, Analyzed: Jun-03-13

<table>
<thead>
<tr>
<th>Phosphorus, Total as P</th>
<th>Result</th>
<th>MRL Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% REC</th>
<th>REC Limit</th>
<th>RPD</th>
<th>RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 0.005</td>
<td>0.005 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Blank (B3E1095-BLK2)
Prepared: May-28-13, Analyzed: Jun-03-13

<table>
<thead>
<tr>
<th>Phosphorus, Total as P</th>
<th>Result</th>
<th>MRL Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% REC</th>
<th>REC Limit</th>
<th>RPD</th>
<th>RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 0.005</td>
<td>0.005 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Blank (B3E1095-BLK3)
Prepared: May-29-13, Analyzed: Jun-03-13

<table>
<thead>
<tr>
<th>Phosphorus, Total as P</th>
<th>Result</th>
<th>MRL Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% REC</th>
<th>REC Limit</th>
<th>RPD</th>
<th>RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 0.005</td>
<td>0.005 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LCS (B3E1095-BS1)
Prepared: May-28-13, Analyzed: Jun-03-13

<table>
<thead>
<tr>
<th>Phosphorus, Total as P</th>
<th>Result</th>
<th>MRL Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% REC</th>
<th>REC Limit</th>
<th>RPD</th>
<th>RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.453</td>
<td>0.005 mg/L</td>
<td>0.500</td>
<td>91</td>
<td>75-112</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LCS (B3E1095-BS2)
Prepared: May-28-13, Analyzed: Jun-03-13

<table>
<thead>
<tr>
<th>Phosphorus, Total as P</th>
<th>Result</th>
<th>MRL Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% REC</th>
<th>REC Limit</th>
<th>RPD</th>
<th>RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.479</td>
<td>0.005 mg/L</td>
<td>0.500</td>
<td>96</td>
<td>75-112</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LCS (B3E1095-BS3)
Prepared: May-29-13, Analyzed: Jun-03-13

<table>
<thead>
<tr>
<th>Phosphorus, Total as P</th>
<th>Result</th>
<th>MRL Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% REC</th>
<th>REC Limit</th>
<th>RPD</th>
<th>RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.487</td>
<td>0.005 mg/L</td>
<td>0.500</td>
<td>97</td>
<td>75-112</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General Parameters, Batch B3E1147

Blank (B3E1147-BLK1)

<table>
<thead>
<tr>
<th>Chlorophyll-a</th>
<th>Result</th>
<th>MRL Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% REC</th>
<th>REC Limit</th>
<th>RPD</th>
<th>RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 0.1</td>
<td>0.1 ug/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REPORTED TO</td>
<td>Slocan Lake Stewardship Society</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROJECT</td>
<td>Slocan Lake Stewartship Society</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WORK ORDER</td>
<td>3051495</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REPORTED</td>
<td>Jun-04-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
General Comments:

CARO Analytical Services employs methods which are conducted according to procedures accepted by appropriate regulatory agencies, and/or are conducted in accordance with recognized professional standards using accepted testing methodologies and quality control efforts, except where otherwise agreed to by the client.

The results in this report apply to the samples analyzed in accordance with the Chain of Custody or Sample Requisition document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued unless otherwise agreed to in writing.
<table>
<thead>
<tr>
<th>Analysis Description</th>
<th>Method Reference</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloride in Water by IC</td>
<td>N/A</td>
<td>Kelowna</td>
</tr>
<tr>
<td>Chlorophyll-A</td>
<td>N/A</td>
<td>Kelowna</td>
</tr>
<tr>
<td>Fluoride in Water by IC</td>
<td>N/A</td>
<td>Kelowna</td>
</tr>
<tr>
<td>Nitrate-N in Water by IC</td>
<td>N/A</td>
<td>Kelowna</td>
</tr>
<tr>
<td>Nitrite-N in Water by IC</td>
<td>N/A</td>
<td>Kelowna</td>
</tr>
<tr>
<td>Phosphorus, Total (persulfate)</td>
<td>N/A</td>
<td>Kelowna</td>
</tr>
<tr>
<td>Potability, IH Comp (Excludes Micro) Pkg</td>
<td>N/A</td>
<td>Kelowna</td>
</tr>
<tr>
<td>Sulfate in Water by IC</td>
<td>N/A</td>
<td>Kelowna</td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>N/A</td>
<td>Kelowna</td>
</tr>
</tbody>
</table>

Method Reference Descriptions:
- APHA: Standard Methods for the Examination of Water and Wastewater, American Public Health Association
- EPA: United States Environmental Protection Agency Test Methods

Glossary of Terms:
- MRL: Method Reporting Limit
- <: Less than the Reported Detection Limit (RDL) - the RDL may be higher than the MRL due to various factors such as dilutions, limited sample volume, high moisture, or interferences
- mg/L: Milligrams per litre
- ug/L: Micrograms per litre
<table>
<thead>
<tr>
<th>Sample ID: Site 1 - 5m (3071507-01) [Water] Sampled: Jul-22-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anions</td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
</tr>
<tr>
<td>Result / Recovery</td>
</tr>
<tr>
<td>0.031</td>
</tr>
<tr>
<td>MRL / Limit</td>
</tr>
<tr>
<td>0.010 mg/L</td>
</tr>
<tr>
<td>Units</td>
</tr>
<tr>
<td>N/A</td>
</tr>
<tr>
<td>Prepared</td>
</tr>
<tr>
<td>Analyzed</td>
</tr>
<tr>
<td>Notes</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
</tr>
<tr>
<td>Result / Recovery</td>
</tr>
<tr>
<td>< 0.010</td>
</tr>
<tr>
<td>MRL / Limit</td>
</tr>
<tr>
<td>0.010 mg/L</td>
</tr>
<tr>
<td>Units</td>
</tr>
<tr>
<td>N/A</td>
</tr>
<tr>
<td>Prepared</td>
</tr>
<tr>
<td>Analyzed</td>
</tr>
<tr>
<td>Notes</td>
</tr>
<tr>
<td>General Parameters</td>
</tr>
<tr>
<td>Chlorophyll-a</td>
</tr>
<tr>
<td>Result / Recovery</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>MRL / Limit</td>
</tr>
<tr>
<td>0.1 ug/L</td>
</tr>
<tr>
<td>Units</td>
</tr>
<tr>
<td>Prepared</td>
</tr>
<tr>
<td>Analyzed</td>
</tr>
<tr>
<td>Notes</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
</tr>
<tr>
<td>Result / Recovery</td>
</tr>
<tr>
<td>0.20</td>
</tr>
<tr>
<td>MRL / Limit</td>
</tr>
<tr>
<td>0.05 mg/L</td>
</tr>
<tr>
<td>Units</td>
</tr>
<tr>
<td>N/A</td>
</tr>
<tr>
<td>Prepared</td>
</tr>
<tr>
<td>Analyzed</td>
</tr>
<tr>
<td>Notes</td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
</tr>
<tr>
<td>Result / Recovery</td>
</tr>
<tr>
<td>< 0.005</td>
</tr>
<tr>
<td>MRL / Limit</td>
</tr>
<tr>
<td>0.005 mg/L</td>
</tr>
<tr>
<td>Units</td>
</tr>
<tr>
<td>N/A</td>
</tr>
<tr>
<td>Prepared</td>
</tr>
<tr>
<td>Analyzed</td>
</tr>
<tr>
<td>Notes</td>
</tr>
<tr>
<td>Calculated Parameters</td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
</tr>
<tr>
<td>Result / Recovery</td>
</tr>
<tr>
<td>0.031</td>
</tr>
<tr>
<td>MRL / Limit</td>
</tr>
<tr>
<td>0.010 mg/L</td>
</tr>
<tr>
<td>Units</td>
</tr>
<tr>
<td>N/A</td>
</tr>
<tr>
<td>Prepared</td>
</tr>
<tr>
<td>Analyzed</td>
</tr>
<tr>
<td>Notes</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
</tr>
<tr>
<td>Result / Recovery</td>
</tr>
<tr>
<td>0.233</td>
</tr>
<tr>
<td>MRL / Limit</td>
</tr>
<tr>
<td>0.050 mg/L</td>
</tr>
<tr>
<td>Units</td>
</tr>
<tr>
<td>N/A</td>
</tr>
<tr>
<td>Prepared</td>
</tr>
<tr>
<td>Analyzed</td>
</tr>
<tr>
<td>Notes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample ID: Site 1 - 50m (3071507-02) [Water] Sampled: Jul-22-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anions</td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
</tr>
<tr>
<td>Result / Recovery</td>
</tr>
<tr>
<td>0.070</td>
</tr>
<tr>
<td>MRL / Limit</td>
</tr>
<tr>
<td>0.010 mg/L</td>
</tr>
<tr>
<td>Units</td>
</tr>
<tr>
<td>N/A</td>
</tr>
<tr>
<td>Prepared</td>
</tr>
<tr>
<td>Analyzed</td>
</tr>
<tr>
<td>Notes</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
</tr>
<tr>
<td>Result / Recovery</td>
</tr>
<tr>
<td>< 0.010</td>
</tr>
<tr>
<td>MRL / Limit</td>
</tr>
<tr>
<td>0.010 mg/L</td>
</tr>
<tr>
<td>Units</td>
</tr>
<tr>
<td>N/A</td>
</tr>
<tr>
<td>Prepared</td>
</tr>
<tr>
<td>Analyzed</td>
</tr>
<tr>
<td>Notes</td>
</tr>
<tr>
<td>General Parameters</td>
</tr>
<tr>
<td>Chlorophyll-a</td>
</tr>
<tr>
<td>Result / Recovery</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>MRL / Limit</td>
</tr>
<tr>
<td>0.1 ug/L</td>
</tr>
<tr>
<td>Units</td>
</tr>
<tr>
<td>Prepared</td>
</tr>
<tr>
<td>Analyzed</td>
</tr>
<tr>
<td>Notes</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
</tr>
<tr>
<td>Result / Recovery</td>
</tr>
<tr>
<td>0.17</td>
</tr>
<tr>
<td>MRL / Limit</td>
</tr>
<tr>
<td>0.05 mg/L</td>
</tr>
<tr>
<td>Units</td>
</tr>
<tr>
<td>N/A</td>
</tr>
<tr>
<td>Prepared</td>
</tr>
<tr>
<td>Analyzed</td>
</tr>
<tr>
<td>Notes</td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
</tr>
<tr>
<td>Result / Recovery</td>
</tr>
<tr>
<td>0.005</td>
</tr>
<tr>
<td>MRL / Limit</td>
</tr>
<tr>
<td>0.005 mg/L</td>
</tr>
<tr>
<td>Units</td>
</tr>
<tr>
<td>N/A</td>
</tr>
<tr>
<td>Prepared</td>
</tr>
<tr>
<td>Analyzed</td>
</tr>
<tr>
<td>Notes</td>
</tr>
<tr>
<td>Calculated Parameters</td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
</tr>
<tr>
<td>Result / Recovery</td>
</tr>
<tr>
<td>0.070</td>
</tr>
<tr>
<td>MRL / Limit</td>
</tr>
<tr>
<td>0.010 mg/L</td>
</tr>
<tr>
<td>Units</td>
</tr>
<tr>
<td>N/A</td>
</tr>
<tr>
<td>Prepared</td>
</tr>
<tr>
<td>Analyzed</td>
</tr>
<tr>
<td>Notes</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
</tr>
<tr>
<td>Result / Recovery</td>
</tr>
<tr>
<td>0.244</td>
</tr>
<tr>
<td>MRL / Limit</td>
</tr>
<tr>
<td>0.050 mg/L</td>
</tr>
<tr>
<td>Units</td>
</tr>
<tr>
<td>N/A</td>
</tr>
<tr>
<td>Prepared</td>
</tr>
<tr>
<td>Analyzed</td>
</tr>
<tr>
<td>Notes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample ID: Site 2 - 5m (3071507-03) [Water] Sampled: Jul-22-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anions</td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
</tr>
<tr>
<td>Result / Recovery</td>
</tr>
<tr>
<td>0.068</td>
</tr>
<tr>
<td>MRL / Limit</td>
</tr>
<tr>
<td>0.010 mg/L</td>
</tr>
<tr>
<td>Units</td>
</tr>
<tr>
<td>N/A</td>
</tr>
<tr>
<td>Prepared</td>
</tr>
<tr>
<td>Analyzed</td>
</tr>
<tr>
<td>Notes</td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
</tr>
<tr>
<td>Result / Recovery</td>
</tr>
<tr>
<td>< 0.010</td>
</tr>
<tr>
<td>MRL / Limit</td>
</tr>
<tr>
<td>0.010 mg/L</td>
</tr>
<tr>
<td>Units</td>
</tr>
<tr>
<td>N/A</td>
</tr>
<tr>
<td>Prepared</td>
</tr>
<tr>
<td>Analyzed</td>
</tr>
<tr>
<td>Notes</td>
</tr>
<tr>
<td>General Parameters</td>
</tr>
<tr>
<td>Chlorophyll-a</td>
</tr>
<tr>
<td>Result / Recovery</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>MRL / Limit</td>
</tr>
<tr>
<td>0.1 ug/L</td>
</tr>
<tr>
<td>Units</td>
</tr>
<tr>
<td>Prepared</td>
</tr>
<tr>
<td>Analyzed</td>
</tr>
<tr>
<td>Notes</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
</tr>
<tr>
<td>Result / Recovery</td>
</tr>
<tr>
<td>0.13</td>
</tr>
<tr>
<td>MRL / Limit</td>
</tr>
<tr>
<td>0.05 mg/L</td>
</tr>
<tr>
<td>Units</td>
</tr>
<tr>
<td>N/A</td>
</tr>
<tr>
<td>Prepared</td>
</tr>
<tr>
<td>Analyzed</td>
</tr>
<tr>
<td>Notes</td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
</tr>
<tr>
<td>Result / Recovery</td>
</tr>
<tr>
<td>0.005</td>
</tr>
<tr>
<td>MRL / Limit</td>
</tr>
<tr>
<td>0.005 mg/L</td>
</tr>
<tr>
<td>Units</td>
</tr>
<tr>
<td>N/A</td>
</tr>
<tr>
<td>Prepared</td>
</tr>
<tr>
<td>Analyzed</td>
</tr>
<tr>
<td>Notes</td>
</tr>
<tr>
<td>Calculated Parameters</td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
</tr>
<tr>
<td>Result / Recovery</td>
</tr>
<tr>
<td>0.068</td>
</tr>
<tr>
<td>MRL / Limit</td>
</tr>
<tr>
<td>0.010 mg/L</td>
</tr>
<tr>
<td>Units</td>
</tr>
<tr>
<td>N/A</td>
</tr>
<tr>
<td>Prepared</td>
</tr>
<tr>
<td>Analyzed</td>
</tr>
<tr>
<td>Notes</td>
</tr>
<tr>
<td>Nitrogen, Total</td>
</tr>
<tr>
<td>Result / Recovery</td>
</tr>
<tr>
<td>0.202</td>
</tr>
<tr>
<td>MRL / Limit</td>
</tr>
<tr>
<td>0.050 mg/L</td>
</tr>
<tr>
<td>Units</td>
</tr>
<tr>
<td>N/A</td>
</tr>
<tr>
<td>Prepared</td>
</tr>
<tr>
<td>Analyzed</td>
</tr>
<tr>
<td>Notes</td>
</tr>
</tbody>
</table>
Sample Analytical Data

Sample ID: Site 2 - 50m (3071507-04) [Water] Sampled: Jul-22-13

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result / Recovery</th>
<th>MRL / Limit</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.029</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>Jul-25-13</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>Jul-25-13</td>
<td></td>
</tr>
<tr>
<td>General Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>1</td>
<td>0.1</td>
<td>ug/L</td>
<td>Jul-24-13</td>
<td>Jul-29-13</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.24</td>
<td>0.05</td>
<td>mg/L</td>
<td>N/A</td>
<td>Jul-24-13</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>0.006</td>
<td>0.005</td>
<td>mg/L</td>
<td>N/A</td>
<td>Jul-24-13</td>
<td></td>
</tr>
<tr>
<td>Calculated Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.029</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.267</td>
<td>0.050</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

Sample ID: Site 3 - 5m (3071507-05) [Water] Sampled: Jul-22-13

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result / Recovery</th>
<th>MRL / Limit</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.027</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>Jul-25-13</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>Jul-25-13</td>
<td></td>
</tr>
<tr>
<td>General Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>1</td>
<td>0.1</td>
<td>ug/L</td>
<td>Jul-24-13</td>
<td>Jul-29-13</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.20</td>
<td>0.05</td>
<td>mg/L</td>
<td>N/A</td>
<td>Jul-24-13</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>N/A</td>
<td>Jul-24-13</td>
<td></td>
</tr>
<tr>
<td>Calculated Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.027</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.223</td>
<td>0.050</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

Sample ID: Site 3 - 50m (3071507-06) [Water] Sampled: Jul-22-13

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result / Recovery</th>
<th>MRL / Limit</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.069</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>Jul-25-13</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>Jul-25-13</td>
<td></td>
</tr>
<tr>
<td>General Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>1</td>
<td>0.1</td>
<td>ug/L</td>
<td>Jul-24-13</td>
<td>Jul-29-13</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.20</td>
<td>0.05</td>
<td>mg/L</td>
<td>N/A</td>
<td>Jul-24-13</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>N/A</td>
<td>Jul-24-13</td>
<td></td>
</tr>
<tr>
<td>Calculated Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.069</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.264</td>
<td>0.050</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>
Sample Analytical Data

Reported To: Slocan Lake Stewardship Society
Project: Slocan Lake Stewardship Society
Work Order: 3071507
Reported: Jul-31-13

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result / Recovery</th>
<th>MRL / Limit</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample ID: Site 4 - 5m (3071507-07) [Water] Sampled: Jul-22-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.038</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>Jul-25-13</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>Jul-25-13</td>
<td></td>
</tr>
<tr>
<td>General Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>2</td>
<td>0.1</td>
<td>ug/L</td>
<td>Jul-24-13</td>
<td>Jul-29-13</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.21</td>
<td>0.05</td>
<td>mg/L</td>
<td>N/A</td>
<td>Jul-24-13</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>N/A</td>
<td>Jul-24-13</td>
<td></td>
</tr>
<tr>
<td>Calculated Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.038</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.247</td>
<td>0.050</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

Sample ID: Site 4 - 50m (3071507-08) [Water] Sampled: Jul-22-13						
Anions						
Nitrogen, Nitrate as N	0.069	0.010	mg/L	N/A	Jul-25-13	
Nitrogen, Nitrite as N	< 0.010	0.010	mg/L	N/A	Jul-25-13	
General Parameters						
Chlorophyll-a	2	0.1	ug/L	Jul-24-13	Jul-29-13	
Nitrogen, Total Kjeldahl	0.12	0.05	mg/L	N/A	Jul-24-13	
Phosphorus, Total as P	< 0.005	0.005	mg/L	N/A	Jul-24-13	
Calculated Parameters						
Nitrogen, Nitrate+Nitrite as N	0.069	0.010	mg/L	N/A	N/A	
Nitrogen, Total	0.190	0.050	mg/L	N/A	N/A	
The following section displays the quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with QC samples that ensure your data is of the highest quality. Common QC types include:

- **Method Blank (Blk):** Laboratory reagent water is carried through sample preparation and analysis steps. Method Blanks indicate that results are free from contamination, i.e. not biased high from sources such as the sample container or the laboratory environment.
- **Duplicate (Dup):** Preparation and analysis of a replicate aliquot of a sample. Duplicates provide a measure of the analytical method's precision, i.e. how reproducible a result is. Duplicates are only reported if they are associated with your sample data.
- **Blank Spike (BS):** A known amount of standard is carried through sample preparation and analysis steps. Blank Spikes, also known as laboratory control samples (LCS), are prepared from a different source of standard than used for the calibration. They ensure that the calibration is acceptable (i.e. not biased high or low) and also provide a measure of the analytical method's accuracy (i.e. closeness of the result to a target value).
- **Standard Reference Material (SRM):** A material of similar matrix to the samples, externally certified for the parameter(s) listed. Standard Reference Materials ensure that the preparation steps in the method are adequate to achieve acceptable recoveries of the parameter(s) tested.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

<table>
<thead>
<tr>
<th>Analyte, Batch B3G1051</th>
<th>Result</th>
<th>MRL Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% REC</th>
<th>REC Limit</th>
<th>RPD</th>
<th>RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank (B3G1051-BLK1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>< 0.010</td>
<td>0.010 mg/L</td>
<td></td>
<td>0.010 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010 mg/L</td>
<td></td>
<td>0.010 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (B3G1051-BLK2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>< 0.010</td>
<td>0.010 mg/L</td>
<td></td>
<td>0.010 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010 mg/L</td>
<td></td>
<td>0.010 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (B3G1051-BLK3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>< 0.010</td>
<td>0.010 mg/L</td>
<td></td>
<td>0.010 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010 mg/L</td>
<td></td>
<td>0.010 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (B3G1051-BLK4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>< 0.010</td>
<td>0.010 mg/L</td>
<td></td>
<td>0.010 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010 mg/L</td>
<td></td>
<td>0.010 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS (B3G1051-BS1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>3.96</td>
<td>0.010 mg/L</td>
<td>4.00</td>
<td>99</td>
<td>85-115</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>1.87</td>
<td>0.010 mg/L</td>
<td>2.00</td>
<td>93</td>
<td>85-115</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS (B3G1051-BS2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>3.90</td>
<td>0.010 mg/L</td>
<td>4.00</td>
<td>98</td>
<td>85-115</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>2.01</td>
<td>0.010 mg/L</td>
<td>2.00</td>
<td>101</td>
<td>85-115</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS (B3G1051-BS3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>3.94</td>
<td>0.010 mg/L</td>
<td>4.00</td>
<td>99</td>
<td>85-115</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>1.98</td>
<td>0.010 mg/L</td>
<td>2.00</td>
<td>99</td>
<td>85-115</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS (B3G1051-BS4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>3.94</td>
<td>0.010 mg/L</td>
<td>4.00</td>
<td>98</td>
<td>85-115</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>2.08</td>
<td>0.010 mg/L</td>
<td>2.00</td>
<td>104</td>
<td>85-115</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duplicate (B3G1051-DUP3)</td>
<td>Source: 3071507-03</td>
<td>Prepared: Jul-25-13, Analyzed: Jul-25-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analyte</td>
<td>Result</td>
<td>MRL Units</td>
<td>Spike Level</td>
<td>Source</td>
<td>% REC</td>
<td>REC Limit</td>
<td>RPD</td>
<td>RPD Limit</td>
<td>Notes</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>--------</td>
<td>-----------</td>
<td>-------------</td>
<td>--------</td>
<td>-------</td>
<td>-----------</td>
<td>-----</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>Anions, Batch B3G1051, Continued</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duplicate (B3G1051-DUP3), Continued</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010 mg/L</td>
<td>< 0.010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>General Parameters, Batch B3G1052</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (B3G1052-BLK1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>< 0.005</td>
<td>0.005 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS (B3G1052-BS1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>0.482</td>
<td>0.005 mg/L</td>
<td>0.500</td>
<td>96</td>
<td>75-112</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Parameters, Batch B3G1115</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (B3G1115-BLK1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>< 0.05</td>
<td>0.05 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (B3G1115-BLK2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>< 0.05</td>
<td>0.05 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS (B3G1115-BS1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>11.3</td>
<td>0.05 mg/L</td>
<td>10.0</td>
<td>113</td>
<td>89-116</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS (B3G1115-BS2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>11.1</td>
<td>0.05 mg/L</td>
<td>10.0</td>
<td>111</td>
<td>89-116</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duplicate (B3G1115-DUP1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.13</td>
<td>0.05 mg/L</td>
<td>0.13</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
REPORTED TO: Slocan Lake Stewardship Society
411 Derosa Drive
New Denver, BC V0G 1S1

ATTENTION: Richard Johnson

PO NUMBER: 3080760
PROJECT: Slocan Lake Stewardship Society
PROJECT INFO: 12049

General Comments:
CARO Analytical Services employs methods which are conducted according to procedures accepted by appropriate regulatory agencies, and/or are conducted in accordance with recognized professional standards using accepted testing methodologies and quality control efforts, except where otherwise agreed to by the client.

The results in this report apply to the samples analyzed in accordance with the Chain of Custody or Sample Requisition document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued unless otherwise agreed to in writing.

Issued By: Jennifer Shanko, AScT
Administration Coordinator

Please contact CARO if more information is needed or to provide feedback on our services.
<table>
<thead>
<tr>
<th>Analysis Description</th>
<th>Method Reference</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-A</td>
<td>APHA 10200 H (2011)</td>
<td>Kelowna</td>
</tr>
<tr>
<td>Nitrate-N in Water by IC</td>
<td>APHA 4110 B</td>
<td>Kelowna</td>
</tr>
<tr>
<td>Nitrite-N in Water by IC</td>
<td>APHA 4110 B</td>
<td>Kelowna</td>
</tr>
<tr>
<td>Phosphorus, Total (persulfate)</td>
<td>APHA 4500-P B.5/F</td>
<td>Kelowna</td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>EPA 351.2 (1993) *</td>
<td>Kelowna</td>
</tr>
</tbody>
</table>

Note: The numbers in brackets represent the year that the method was published/approved

Method Reference Descriptions:

- APHA: Standard Methods for the Examination of Water and Wastewater, American Public Health Association
- EPA: United States Environmental Protection Agency Test Methods

Glossary of Terms:

- MRL: Method Reporting Limit
- <: Less than the Reported Detection Limit (RDL) - the RDL may be higher than the MRL due to various factors such as dilutions, limited sample volume, high moisture, or interferences
- mg/L: Milligrams per litre
- ug/L: Micrograms per litre
SAMPLE ANALYTICAL DATA

Sample ID: Site 1 - 5m (3080760-01) [Water] Sampled: Aug-12-13 09:45

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result / Recovery</th>
<th>MRL / Limit</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.042</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>Aug-15-13</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>Aug-15-13</td>
<td></td>
</tr>
</tbody>
</table>

General Parameters

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result / Recovery</th>
<th>MRL / Limit</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>0.8</td>
<td>0.1</td>
<td>ug/L</td>
<td>Aug-14-13</td>
<td>Aug-21-13</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.06</td>
<td>0.05</td>
<td>mg/L</td>
<td>Aug-14-13</td>
<td>Aug-16-13</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>Aug-14-13</td>
<td>Aug-21-13</td>
<td></td>
</tr>
</tbody>
</table>

Calculated Parameters

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result / Recovery</th>
<th>MRL / Limit</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.042</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.101</td>
<td>0.050</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

Sample ID: Site 1 - 50m (3080760-02) [Water] Sampled: Aug-12-13 09:45

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result / Recovery</th>
<th>MRL / Limit</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>Aug-15-13</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>Aug-15-13</td>
<td></td>
</tr>
</tbody>
</table>

General Parameters

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result / Recovery</th>
<th>MRL / Limit</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>0.4</td>
<td>0.1</td>
<td>ug/L</td>
<td>Aug-14-13</td>
<td>Aug-21-13</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.07</td>
<td>0.05</td>
<td>mg/L</td>
<td>Aug-14-13</td>
<td>Aug-16-13</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>0.006</td>
<td>0.005</td>
<td>mg/L</td>
<td>Aug-14-13</td>
<td>Aug-21-13</td>
<td></td>
</tr>
</tbody>
</table>

Calculated Parameters

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result / Recovery</th>
<th>MRL / Limit</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.068</td>
<td>0.050</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

Sample ID: Site 2 - 5m (3080760-03) [Water] Sampled: Aug-12-13 10:30

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result / Recovery</th>
<th>MRL / Limit</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>Aug-15-13</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>Aug-15-13</td>
<td></td>
</tr>
</tbody>
</table>

General Parameters

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result / Recovery</th>
<th>MRL / Limit</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>0.2</td>
<td>0.1</td>
<td>ug/L</td>
<td>Aug-14-13</td>
<td>Aug-21-13</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.05</td>
<td>0.05</td>
<td>mg/L</td>
<td>Aug-14-13</td>
<td>Aug-16-13</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>Aug-14-13</td>
<td>Aug-21-13</td>
<td></td>
</tr>
</tbody>
</table>

Calculated Parameters

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result / Recovery</th>
<th>MRL / Limit</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.052</td>
<td>0.050</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>
Sample Analytical Data

Sample ID: Site 2 - 50m (3080760-04) [Water] Sampled: Aug-12-13 10:30

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result / Recovery</th>
<th>MRL / Limit</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.044</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>Aug-15-13</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>Aug-15-13</td>
<td></td>
</tr>
<tr>
<td>General Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>0.4</td>
<td>0.1</td>
<td>μg/L</td>
<td>Aug-14-13</td>
<td>Aug-21-13</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.05</td>
<td>0.05</td>
<td>mg/L</td>
<td>Aug-14-13</td>
<td>Aug-16-13</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>0.006</td>
<td>0.005</td>
<td>mg/L</td>
<td>Aug-14-13</td>
<td>Aug-21-13</td>
<td></td>
</tr>
<tr>
<td>Calculated Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.044</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.095</td>
<td>0.050</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

Sample ID: Site 3 - 5m (3080760-05) [Water] Sampled: Aug-12-13 11:20

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result / Recovery</th>
<th>MRL / Limit</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>Aug-15-13</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>Aug-15-13</td>
<td></td>
</tr>
<tr>
<td>General Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>0.7</td>
<td>0.1</td>
<td>μg/L</td>
<td>Aug-14-13</td>
<td>Aug-21-13</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.11</td>
<td>0.05</td>
<td>mg/L</td>
<td>Aug-14-13</td>
<td>Aug-16-13</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>Aug-14-13</td>
<td>Aug-21-13</td>
<td></td>
</tr>
<tr>
<td>Calculated Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.107</td>
<td>0.050</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

Sample ID: Site 3 - 50m (3080760-06) [Water] Sampled: Aug-12-13 11:20

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result / Recovery</th>
<th>MRL / Limit</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.044</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>Aug-15-13</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>Aug-15-13</td>
<td></td>
</tr>
<tr>
<td>General Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>0.9</td>
<td>0.1</td>
<td>μg/L</td>
<td>Aug-14-13</td>
<td>Aug-21-13</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>< 0.05</td>
<td>0.05</td>
<td>mg/L</td>
<td>Aug-14-13</td>
<td>Aug-16-13</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>Aug-14-13</td>
<td>Aug-21-13</td>
<td></td>
</tr>
<tr>
<td>Calculated Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.044</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>< 0.050</td>
<td>0.050</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>
Sample Analytical Data

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result / Recovery</th>
<th>MRL / Limit</th>
<th>Units</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample ID: Site 4 - 5m (3080760-07) [Water] Sampled: Aug-12-13 12:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.012</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>Aug-15-13</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>Aug-15-13</td>
<td></td>
</tr>
<tr>
<td>General Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>0.9</td>
<td>0.1</td>
<td>ug/L</td>
<td>Aug-14-13</td>
<td>Aug-21-13</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>< 0.05</td>
<td>0.05</td>
<td>mg/L</td>
<td>Aug-14-13</td>
<td>Aug-16-13</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>Aug-14-13</td>
<td>Aug-21-13</td>
<td></td>
</tr>
<tr>
<td>Calculated Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.012</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>< 0.050</td>
<td>0.050</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Sample ID: Site 4 - 50m (3080760-08) [Water] Sampled: Aug-12-13 12:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate as N</td>
<td>0.049</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>Aug-15-13</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite as N</td>
<td>< 0.010</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>Aug-15-13</td>
<td></td>
</tr>
<tr>
<td>General Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>0.8</td>
<td>0.1</td>
<td>ug/L</td>
<td>Aug-14-13</td>
<td>Aug-21-13</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>0.06</td>
<td>0.05</td>
<td>mg/L</td>
<td>Aug-14-13</td>
<td>Aug-16-13</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total as P</td>
<td>< 0.005</td>
<td>0.005</td>
<td>mg/L</td>
<td>Aug-14-13</td>
<td>Aug-21-13</td>
<td></td>
</tr>
<tr>
<td>Calculated Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate+Nitrite as N</td>
<td>0.049</td>
<td>0.010</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total</td>
<td>0.110</td>
<td>0.050</td>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>
The following section displays the quality control (QC) data that is associated with your sample data. Groups of samples are prepared in “batches” and analyzed in conjunction with QC samples that ensure your data is of the highest quality. Common QC types include:

- **Method Blank (Blk):** Laboratory reagent water is carried through sample preparation and analysis steps. Method Blanks indicate that results are free from contamination, i.e. not biased high from sources such as the sample container or the laboratory environment.

- **Duplicate (Dup):** Preparation and analysis of a replicate aliquot of a sample. Duplicates provide a measure of the analytical method’s precision, i.e. how reproducible a result is. Duplicates are only reported if they are associated with your sample data.

- **Blank Spike (BS):** A known amount of standard is carried through sample preparation and analysis steps. Blank Spikes, also known as laboratory control samples (LCS), are prepared from a different source of standard than used for the calibration. They ensure that the calibration is acceptable (i.e. not biased high or low) and also provide a measure of the analytical method’s accuracy (i.e. closeness of the result to a target value).

- **Standard Reference Material (SRM):** A material of similar matrix to the samples, externally certified for the parameter(s) listed. Standard Reference Materials ensure that the preparation steps in the method are adequate to achieve acceptable recoveries of the parameter(s) tested.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

Analyte Result MRL Units Spike Level Source Result % REC REC Limit RPD RPD Limit Notes

Anions, Batch B3H0488

Blank (B3H0488-BLK1)

- Nitrogen, Nitrate as N < 0.010 0.010 mg/L
- Nitrogen, Nitrite as N < 0.010 0.010 mg/L

Blank (B3H0488-BLK2)

- Nitrogen, Nitrate as N < 0.010 0.010 mg/L
- Nitrogen, Nitrite as N < 0.010 0.010 mg/L

Blank (B3H0488-BLK3)

- Nitrogen, Nitrate as N < 0.010 0.010 mg/L
- Nitrogen, Nitrite as N < 0.010 0.010 mg/L

LCS (B3H0488-BS1)

- Nitrogen, Nitrate as N 3.80 0.010 mg/L 4.00 95 85-115
- Nitrogen, Nitrite as N 1.79 0.010 mg/L 2.00 90 85-115

LCS (B3H0488-BS2)

- Nitrogen, Nitrate as N 3.85 0.010 mg/L 4.00 96 85-115
- Nitrogen, Nitrite as N 1.93 0.010 mg/L 2.00 96 85-115

LCS (B3H0488-BS3)

- Nitrogen, Nitrate as N 3.87 0.010 mg/L 4.00 97 85-115
- Nitrogen, Nitrite as N 1.94 0.010 mg/L 2.00 97 85-115

General Parameters, Batch B3H0469

Blank (B3H0469-BLK2)

- Phosphorus, Total as P < 0.005 0.005 mg/L

LCS (B3H0469-BS2)

- Phosphorus, Total as P 0.488 0.005 mg/L 0.500 98 75-112
QUALITY CONTROL DATA

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>MRL Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>% REC</th>
<th>REC Limit</th>
<th>RPD</th>
<th>RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Parameters, Batch B3H0470, Continued</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (B3H0470-BLK1)</td>
<td></td>
<td>Prepared: Aug-14-13, Analyzed: Aug-16-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>< 0.05</td>
<td>0.05 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (B3H0470-BLK2)</td>
<td></td>
<td>Prepared: Aug-14-13, Analyzed: Aug-16-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>< 0.05</td>
<td>0.05 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS (B3H0470-BS1)</td>
<td></td>
<td>Prepared: Aug-14-13, Analyzed: Aug-16-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>10.6</td>
<td>0.05 mg/L</td>
<td>10.0</td>
<td>106</td>
<td>89-116</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS (B3H0470-BS2)</td>
<td></td>
<td>Prepared: Aug-14-13, Analyzed: Aug-16-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>10.8</td>
<td>0.05 mg/L</td>
<td>10.0</td>
<td>108</td>
<td>89-116</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Parameters, Batch B3H0478</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (B3H0478-BLK1)</td>
<td></td>
<td>Prepared: Aug-21-13, Analyzed: Aug-21-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>< 0.1</td>
<td>0.1 ug/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Slocan Lake 2010-2013 Water Quality Monitoring Project

APPENDIX III

Water Quality Guidelines for Metals Sampled
<table>
<thead>
<tr>
<th>Metal</th>
<th>Drinking Water</th>
<th>Freshwater Aquatic Life</th>
<th>Primary Contact Recreation</th>
<th>Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>0.2 mg/L</td>
<td>For pH ≥ 6.5: Maximum: 0.1 mg/L; 30-day mean: 0.05 mg/L</td>
<td>0.2 mg/L</td>
<td>Criteria referred to dissolved aluminum; dependent on pH. For pH < 6.5 (see guidelines)</td>
</tr>
<tr>
<td>Antimony</td>
<td>14 µg/L</td>
<td>20 µg/L</td>
<td>No guideline</td>
<td>Total antimony</td>
</tr>
<tr>
<td>Arsenic</td>
<td>25 µg/L</td>
<td>5 µg/L</td>
<td>No guideline</td>
<td>Interim guideline for drinking water</td>
</tr>
<tr>
<td>Barium</td>
<td>No guideline</td>
<td>Maximum: 1mg/L; 30-day average: 5 mg/L</td>
<td>No guideline</td>
<td>Total barium</td>
</tr>
<tr>
<td>Beryllium</td>
<td>No guideline</td>
<td>Maximum 4 µg/L; chronic criteria 5.3µg/L</td>
<td>No guideline</td>
<td>Total beryllium</td>
</tr>
<tr>
<td>Bismuth</td>
<td>No guideline</td>
<td>No guideline</td>
<td>No guideline</td>
<td></td>
</tr>
<tr>
<td>Boron</td>
<td>5 mg/L</td>
<td>1.2 mg/L</td>
<td>No guideline</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>No guideline</td>
<td>Total cadmium µg/L = 10 exp (0.86[log{hardness}]-3.2)</td>
<td>No guideline</td>
<td>Dependent on water hardness; range 0.01 to 0.06 µg/L (see report p. 31).</td>
</tr>
<tr>
<td>Calcium</td>
<td>No guideline</td>
<td>Water with <4 mg/L highly sensitive to acidic inputs; 4-8 mg/L moderate sensitivity; >8 mg/L low sensitivity</td>
<td>No guideline</td>
<td>Dissolved calcium</td>
</tr>
<tr>
<td>Chromium</td>
<td>No guideline</td>
<td>Maximum 1 µg/L Cr (VI)</td>
<td>No guideline</td>
<td>Total chromium; guideline under review.</td>
</tr>
<tr>
<td>Cobalt</td>
<td>No guideline</td>
<td>Maximum 110 µg/L; 30-day average 4 µg/L</td>
<td>No guideline</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>500 µg/L</td>
<td>30-day average ≤ 2 µg/L; Maximum (µg/L) = (0.094(hardness)+2), hardness as mg/L of CaCO₃</td>
<td>1000 µg/L</td>
<td>Total copper; when avg hardness as CaCO₃ ≤ 50mg/L</td>
</tr>
<tr>
<td>Iron</td>
<td>No guideline</td>
<td>Maximum 1 mg/L total iron; 0.35 mg/L dissolved iron.</td>
<td>No guideline</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>Maximum 50 µg/L</td>
<td>1) Water hardness, as Ca CO₃, greater than 8 mg/L: Maximum (acute) (µg/L) = e(1.273 ln (hardness) - 1.460). 2) 30-day average (µg/L) ≤ 3.31 + e(1.273 ln (mean hardness) - 4.704)</td>
<td>Maximum 50 µg/L</td>
<td>Total lead. For water hardness, as Ca CO₃, less than or equal 8 mg/L Maximum 3 µg/L</td>
</tr>
<tr>
<td>Metal</td>
<td>Drinking Water</td>
<td>Freshwater Aquatic Life</td>
<td>Primary Contact Recreation</td>
<td>Considerations</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------</td>
<td>---</td>
<td>----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Lithium</td>
<td>No guideline</td>
<td>Maximum 0.870 mg/L; chronic maximum 0.096 mg/L</td>
<td>No guideline</td>
<td>Total lithium</td>
</tr>
<tr>
<td>Magnesium</td>
<td>No guideline</td>
<td>No guideline</td>
<td>No guideline</td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>No guideline</td>
<td>1) Maximum mg/L ≤ 0.01102 hardness + 0.54;</td>
<td>No guideline</td>
<td>Dependent on water hardness. At Slocan Lake’s mean hardness 42.5 mg/L, maximum less or equal to 1.0 mg/L.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) Average of five weekly measurements taken over a 30-day period ≤ 0.0044 hardness + 0.605</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>Maximum total 1.0 µg/L</td>
<td>1) MeHg = 0.5% of total Hg, maximum 0.02 µg/L;</td>
<td>Maximum total 1.0 µg/L</td>
<td>Total mercury. Guideline freshwater life dependent on the methyl mercury (MeHg) content of total mercury</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) MeHg = 1% of total Hg, maximum 0.01 µg/L; 3) MeHg = 8% of total Hg, maximum 0.00125 µg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molybdenum</td>
<td>Maximum 0.25 mg/L</td>
<td>Maximum 2 mg/L; 30-day average ≤ 1 mg/L</td>
<td>No guideline</td>
<td>Total molybdenum</td>
</tr>
<tr>
<td>Nickel</td>
<td>No guideline</td>
<td>Maximum total 25 µg/L</td>
<td>No guideline</td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>No guideline</td>
<td>373 - 432 mg/L, as KCl</td>
<td>No guideline</td>
<td>Threshold for Daphnia magna immobilization</td>
</tr>
<tr>
<td>Selenium</td>
<td>Maximum 10 µg/L</td>
<td>Mean 2 µg/L</td>
<td>No guideline</td>
<td>The mean concentration in the water column is calculated based on at least 5 weekly samples taken over a 30-day period. Presently under review.</td>
</tr>
<tr>
<td>Silicon</td>
<td>No guideline</td>
<td>No guideline</td>
<td>No guideline</td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td>No guideline</td>
<td>1) 30-day mean: 0.05 µg/L; 2) maximum 0.1µg/L</td>
<td>No guideline</td>
<td>Dependent on water hardness. Indicated guideline is for water hardness ≤100 mg/L</td>
</tr>
<tr>
<td>Sodium</td>
<td>No guideline</td>
<td>No guideline</td>
<td>No guideline</td>
<td></td>
</tr>
<tr>
<td>Metal</td>
<td>Drinking Water</td>
<td>Freshwater Aquatic Life</td>
<td>Primary Contact Recreation</td>
<td>Considerations</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>-------------------------</td>
<td>---------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Strontium</td>
<td>No guideline</td>
<td>No guideline</td>
<td>No guideline</td>
<td>No guideline</td>
</tr>
<tr>
<td>Sulfur</td>
<td>No guideline</td>
<td>No guideline</td>
<td>No guideline</td>
<td>No guideline</td>
</tr>
<tr>
<td>Tellurium</td>
<td>No guideline</td>
<td>No guideline</td>
<td>No guideline</td>
<td>No guideline</td>
</tr>
<tr>
<td>Thallium</td>
<td>Maximum 2 µg/L;</td>
<td>No guideline</td>
<td>No guideline</td>
<td>Total thallium. In the lower Columbia River a 30-day mean objective of 0.8 µg/L. In Ontario the water quality objective is 0.3 µg/L.</td>
</tr>
<tr>
<td>Thorium</td>
<td>No guideline</td>
<td>No guideline</td>
<td>No guideline</td>
<td>No guideline</td>
</tr>
<tr>
<td>Tin</td>
<td>No guideline</td>
<td>No guideline</td>
<td>No guideline</td>
<td>As per different organic and inorganic forms of tin (see guidelines).</td>
</tr>
<tr>
<td>Titanium</td>
<td>No guideline</td>
<td>1) Maximum threshold for Scenedesmus spp: 2 mg/L; 2) Maximum threshold for Daphnia spp: 4.6 mg/L</td>
<td>No guideline</td>
<td>Total titanium</td>
</tr>
<tr>
<td>Uranium</td>
<td>No guideline</td>
<td>Maximum 300 µg/L</td>
<td>No guideline</td>
<td>Total uranium</td>
</tr>
<tr>
<td>Vanadium</td>
<td>No guideline</td>
<td>Maximum 6 µg/L</td>
<td>No guideline</td>
<td>Total vanadium</td>
</tr>
<tr>
<td>Yttrium</td>
<td>No guideline</td>
<td>No guideline</td>
<td>No guideline</td>
<td>No guideline</td>
</tr>
<tr>
<td>Zinc</td>
<td>5000 µg/L</td>
<td>Maximum (instantaneous) 33 µg/L; 30-day average maximum 7.5 µg/L</td>
<td>5000 µg/L</td>
<td>Total zinc for water hardness ≤ 90 mg/L of CaCO₃. For other water hardness see Guidelines.</td>
</tr>
<tr>
<td>Zirconium</td>
<td>No guideline</td>
<td>No guideline</td>
<td>No guideline</td>
<td>No guideline</td>
</tr>
</tbody>
</table>
Slocan Lake 2010-2013 Water Quality Monitoring Project

APPENDIX IV

Microbiology Results and Laboratory Reports
We have tested the samples of water submitted by you on September 30, 2010 and report as follows:

Method of Testing:

Analyses was performed in accordance with methods outlined in the "Standard Methods of Examination of Water and Wastewater", 17th edition, 1989 Published by the American Public Health Association, Specifically, Section 9222D. Microbiological tests were done using Membrane Filtration.

Results of Testing:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Fecal</td>
<td>Total Fecal</td>
<td>Total Fecal</td>
<td>Total Fecal</td>
<td>Total Fecal</td>
</tr>
<tr>
<td>1. Slocan</td>
<td>1</td>
<td>0</td>
<td>17</td>
<td>0</td>
<td>Gt 300</td>
</tr>
<tr>
<td>2. Silverton Resort</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>3. Silverton Creek</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>4. New Denver Hospital</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>5. Carpenter Creek</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>6. Wilson Creek</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>7. Hills</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>8. QA/QC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Gt = Greater than

Analyst:
Jennifer Yeow, Microbiologist, Passmore Laboratory Ltd.

Passmore Laboratory Ltd. complies with methods and certification through the Canadian Association for Laboratory Accreditation (CALA).
Comments:
Coliform refers to a group of bacteria that have been tested for over 90 years as indicators of human infection. They are defined as rod-shaped non-spore forming organisms. Coliforms are abundant in the feces of warm-blooded animals, but can also be found in the aquatic environment, in soil and on vegetation. Their presence is used to indicate that other pathogenic organisms of fecal origin may be present. These include other bacteria, viruses, protozoa (Giardia, Cryptosporidium) and multicellular parasites (Health Canada).

There are no Provincial Guideline limits for Total Coliforms drinking water.

Total Coliforms alone are not good indicators of fecal contamination. For example, a study done comparing water systems for the presence of outbreaks and violations of the Total Coliform Rule found no significant difference in total coliform violations between areas with and without outbreaks of waterborne illness (Nwachuku et al., 2002).

Despite the above statement, most researchers agree Total Coliforms are a useful marker for non-health-related operational monitoring. This is because their presence in drinking water often indicates a treatment failure or contamination event: thus, they can be associated with disease outbreaks.

Regarding Coliform test results on Slocan Lake, it is worth noting a correlation between high counts and regions where the water is likely to experience human and/or tributary creek inputs (Hills with Bonanza Creek and Slocan with Slocan City). See chart below:

As noted in the study done in 2008, low numbers of Fecal Coliform Bacteria indicate human/warm blooded animal contamination is minimal in sample site waters of Slocan Lake.

Respectfully Submitted,
Jennifer Yeow
We have tested the samples of water submitted by you August 16, 23, September 01, 09 and 16, 2011 and report as follows:

Method of Testing:
Five samples were collected at seven sites over 30 days in accordance with Provincial Health Guidelines for evaluation of Total, Thermotolerant Coliforms and E.coli bacteria. Analyses was performed in accordance with methods outlined in the "Standard Methods of Examination of Water and Wastewater", 17th edition, 1989 published by the American Public Health Association, Specifically, Section 9222D. All tests were done by Membrane Filtration

Results of Testing:

<table>
<thead>
<tr>
<th>Date</th>
<th>Site</th>
<th>Total cfu/100 ml</th>
<th>Fecal cfu/100 ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/16/2010</td>
<td>Slocan</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>8/23/2010</td>
<td>Silverton Hotel</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>3*</td>
<td>6</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>9/01/2010</td>
<td>Silverton Creek</td>
<td>3</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>7</td>
<td>3</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>9/09/2010</td>
<td>New Denver Hospital</td>
<td>1</td>
<td>0</td>
<td>12</td>
<td>2*</td>
<td>6</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>9/16/2010</td>
<td>Carpenter Creek</td>
<td>137</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Wilson Creek</td>
<td>7</td>
<td>0</td>
<td>3</td>
<td>1*</td>
<td>1</td>
<td>0</td>
<td>9</td>
<td>1*</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Hills</td>
<td>22</td>
<td>0</td>
<td>30</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>64</td>
<td>1*</td>
<td>11</td>
<td>1*</td>
</tr>
<tr>
<td></td>
<td>QA/QC (in house)</td>
<td>0</td>
</tr>
</tbody>
</table>

cfu = colony forming units, Gt = Greater than
*All Thermotolerant Coliform colonies were tested for E.coli and found to be negative

Analyst:
Jennifer Yeow, Microbiologist, Passmore Laboratory Ltd.

Passmore Laboratory Ltd. complies with methods and certification through UBC’s Canadian Microbiological Proficiency Testing Program
Background:
Coliforms refer to a group of bacteria that have been tested for over 90 years as indicators of human infection. They are defined as rod-shaped non-spore forming organisms. Coliforms are abundant in the feces of warm-blooded animals, but can also be found in the aquatic environment, in soil and on vegetation. Their presence is used to indicate other pathogenic organisms of fecal origin that may be present. These include other bacteria, viruses, protozoa (Giardia, Cryptosporidium) and multicellular parasites. The three tests done are described:

1. Total Coliforms – Bacteria that ferment lactose at 35ºC. This group includes bacteria from warm-blooded animal source as well as plant source. E.g. from algae, decaying plants

2. Thermotolerant or Fecal Coliforms – Bacteria that have the capacity to grow at elevated temperature e.g. recently shed from the intestine of warm blooded animals

3. E.coli – Bacteria that are a subgroup of the Total and Thermotolerant groups that are known to inhabit humans, warm blooded animals and some serotypes are pathogenic to humans.

Provincial Government Guidelines for “raw” or untreated drinking water state that no Thermotolerant (Fecal Coliforms) and no E.coli. should be present. Guidelines for water used for primary contact recreation use state the Thermotolerant Coliform level should not exceed a geometric mean of 200/100ml in 5 samples taken in a 30 day period. Also, the E.coli level should not exceed a geometric mean of 77/100ml in 5 samples over a 30 day period.

Findings:
Total Coliforms
The test results for 2010 showed high counts in regions where the water was likely to experience human and/or tributary creek nutrient input (Bonanza Creek in Hills and Slocan City). In addition, there was one very high count at Slocan (greater than 300cfu). In 2011 we did not see high Total Coliform counts at the Slocan site. However, counts at the Hills site remained relatively high. High counts (137cfu) were observed off Carpenter Creek on August 16th and at Hills (64cfu) on Sept 9th. Counts at the other sites averaged 10 cfu/100ml and were slightly higher than seen in 2010 when the average was 4cfu/100ml.
Findings:
Thermotolerant Coliform Bacteria
In 2010, samples collected at Slocan and Hills on September 22nd showed low (1-2cfu/ml) counts for Thermotolerant Bacteria. Both samples were tested for E.coli and found to be positive. In 2011, eight samples were found to contain Thermotolerant coliforms (averaging 2 cfu/100ml) taken from all sites and none of the samples were positive for E.coli. See chart below:

As we have seen in 2011, there are organisms other than E.coli isolated in the test for Thermotolerant bacteria that may not be from human/warm blooded animal source. However, they may still have a correlation with disease and so, are recommended as indicators of water quality.

Respectfully Submitted,

Jennifer Yeow, Microbiologist
Passmore Laboratory Ltd.
We have tested the samples of water submitted by you August 07, 17, 22, 28 September 05, and report as follows:

Method of Testing:
Five samples were collected at seven sites over 30 days in accordance with Provincial Health Guidelines for evaluation of Total, Thermotolerant Coliforms and E.coli bacteria. Analyses was performed in accordance with methods outlined in the "Standard Methods of Examination of Water and Wastewater", 17th edition, 1989 published by the American Public Health Association, Specifically, Section 9222D. All tests were done by Membrane Filtration.

Results of Testing:

<table>
<thead>
<tr>
<th></th>
<th>8/07/2012</th>
<th>8/17/2012</th>
<th>8/22/2012</th>
<th>8/28/2012</th>
<th>9/05/2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coliforms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fecal E.coli</td>
<td>1. Slocan</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2. Silverton Hotel</td>
<td>11</td>
<td>3</td>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>3. Near Silverton Creek</td>
<td>14</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4. New Denver Hospital</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>5. New Denver, Carpenter Creek</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>6. Roseberry Wilson Creek</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>7. Hills</td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>8. QA/QC (in house)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

All results expressed as Total Fecal E.coli, Total Fecal E.coli per 100ml

Coliforms - “colony forming units” per 100ml

1. Slocan 3 0 0 0 0 0 5 0 0 6 0 0 4 0 0
2. Silverton Hotel 11 3 2 24 2 0 33 0 0 5 1 1 13 0 0
3. Near Silverton Creek 14 1 4 2 1 0 1 0 1 19 0 0 10 0 0
4. New Denver Hospital 7 0 0 23 1 0 6 0 0 2 0 0 6 0 0
5. New Denver, Carpenter Creek 2 0 0 6 2 0 9 0 0 2 0 0 0 0 0
6. Roseberry Wilson Creek 0 0 0 0 0 0 12 0 0 0 0 0 6 0 0
7. Hills 0 0 0 17 1 0 116 0 1 18 0 1 21 0 0
8. QA/QC (in house) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Cfu = colony forming units, Gt = Greater than

Analyst:
Tony Yeow, Passmore Laboratory Ltd.
<table>
<thead>
<tr>
<th>Date</th>
<th>Slocan</th>
<th>Silverton Hotel</th>
<th>Near Silverton Creek</th>
<th>New Denver Hospital</th>
<th>New Denver, Carpenter Creek</th>
<th>Roseberry Wilson Creek</th>
<th>Hills</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/7/2012</td>
<td>18</td>
<td>21</td>
<td>20</td>
<td>22</td>
<td>20</td>
<td>18</td>
<td>16.5</td>
</tr>
<tr>
<td>8/17/2012</td>
<td>18</td>
<td>18</td>
<td>19</td>
<td>20.5</td>
<td>19</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>8/22/2012</td>
<td>15.5</td>
<td>19</td>
<td>18</td>
<td>19.5</td>
<td>17</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>8/28/2012</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>17</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>9/5/2012</td>
<td></td>
<td>17</td>
<td>17</td>
<td></td>
<td>15</td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

Background:

Coliforms refer to a group of bacteria that have been tested for over 90 years as indicators of human infection. They are defined as rod-shaped non-spore forming bacteria that ferment lactose with gas production. They are often associated with decaying plant material. A subgroup of this class are the Fecal or Thermotolerant coliforms. They are abundant in the feces of warm-blooded animals, but can also be found in the aquatic environment, in soil and on vegetation. Their presence is used to indicate other pathogenic organisms of fecal origin that may be present. These include other bacteria, viruses, protozoa (Giardia, Cryptosporidium) and multicellular parasites. E.coli is a sub-group of the Coliforms organisms known to be associated with human infection. Thermotolerant coliform bacteria do not tolerate cold water and their presence indicates recent contamination. The three tests done are described:

1. **Total Coliforms** – Bacteria that ferment lactose at 35°C. This group includes bacteria from warm-blooded animal source as well as plant source. E.g. from algae, decaying plants

2. **Thermotolerant or Fecal Coliforms** – Bacteria that have the capacity to grow at elevated temperature e.g. recently shed from the intestine of warm-blooded animals

3. **E.coli** – Bacteria that are a subgroup of the Total and Thermotolerant groups that are known to inhabit humans, warm blooded animals and some serotypes are pathogenic to humans.

Provincial Government Guidelines for “raw” or untreated drinking water state that no Thermotolerant (Fecal Coliforms) and no E.coli. should be present. Guidelines for water used for primary contact recreation use state the Thermotolerant Coliform level should not exceed a geometric mean of 200/100ml in 5 samples taken in a 30 day period. Also, the E.coli level should not exceed a geometric mean of 77/100ml in 5 samples over a 30 day period.
Findings:
Total Coliforms
The test results for 2012 showed relatively high counts at Hills (116/100ml on Aug 22nd) and near the Silverton Hotel (33/100ml on Aug 22nd). Historically, Hills and Slocan have shown higher total coliform counts. Overall, the counts are in-line with those seen in 2010 and 2011.

Total Coliforms in Slocan Lake
Count /100 milliliters (5 samples over 30 days)

Thermotolerant Coliform and E.coli Bacteria
In 2012, samples collected near the Silverton Hotel and Silverton Creek showed both Thermotolerant Coliforms and E.coli. No Thermotolerant Coliforms or E.coli were seen in Slocan or near Wilson Creek. This differs from collections in 2010 where E.coli was seen at Slocan Station and no E.coli was seen at any station in 2011. Overall, counts were low (less than 4/100ml) and in the same range as previous years.
Summary:
In years 2010 and 2011 we tended to see elevated Coliform counts at stations in Slocan and Hills, while in 2012, slightly higher counts were observed near Silverton and again in Hills. No exceptionally high counts for Thermotolerant coliforms or E.coli were observed at any station.

It is important to continue recording water temperature when collecting samples because pathogenic bacteria are sensitive to water temperature.

Respectfully Submitted,

Jennifer and Tony Yeow
Passmore Laboratory Ltd.

Passmore Laboratory Ltd. complies with methods and certification through UBC’s Canadian Microbiological Proficiency Testing Program
Client: Slocan Lake Stewardship Society

Email: richard.sirc@gmail.com

September 27, 2013

We have tested the samples of water submitted by you August 19th, 25th, 30th, September 7th, and 12th and report as follows:

Method of Testing:
Five samples were collected at seven sites over 30 days in accordance with Provincial Health Guidelines for evaluation of Total, Thermotolerant Coliforms and E.coli bacteria. Analyses were performed in accordance with methods outlined in the "Standard Methods of Examination of Water and Wastewater", 21th edition, 2005 published by the American Public Health Association, Specifically, Sections 9222B,D,G. All tests were done by Membrane Filtration

Results of Testing:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Fecal E.coli</td>
<td>Total</td>
<td>Fecal E.coli</td>
<td>Total</td>
</tr>
<tr>
<td>1. Slocan</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2. Silverton Hotel</td>
<td>8</td>
<td>0</td>
<td>1</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>3. Near Silverton Creek</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4. New Denver Hospital</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>5. New Denver, Carpenter Creek</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6. Roseberry Wilson Creek</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7. Hills</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8. Bigalow Bay</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

QA/QC +Control 110 14 53 124 111 111 200 200 23 270 100 nd nd nd
QA/QC -Control 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

cfu = colony forming units, nd = not done

Analyst: Tony Yeow,
Passmore Laboratory Ltd.
Water Temperature in Degrees Centigrade at Time of Sample Collection

<table>
<thead>
<tr>
<th>Date</th>
<th>8/19/2013</th>
<th>8/25/2013</th>
<th>8/30/2013</th>
<th>9/07/2013</th>
<th>9/12/2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Slocan</td>
<td></td>
<td>18</td>
<td>18</td>
<td>19</td>
<td>18.5</td>
</tr>
<tr>
<td>2. Silverton Hotel</td>
<td></td>
<td>21</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>3. Near Silverton Creek</td>
<td></td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>18.5</td>
</tr>
<tr>
<td>4. New Denver Hospital</td>
<td>22</td>
<td>20.5</td>
<td>19.5</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>5. New Denver, Carpenter Creek</td>
<td>20</td>
<td>19</td>
<td>17.5</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>6. Roseberry Wilson Creek</td>
<td>18</td>
<td>18</td>
<td>19</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>7. Hills</td>
<td>16.5</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>8. Bigalow Bay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18.5</td>
</tr>
</tbody>
</table>

Background:

Coliforms refer to a group of bacteria that have been tested for over 90 years as indicators of water quality and potential for human infection. They are defined as rod-shaped non-spore forming bacteria that ferment lactose with gas production. As a group, they are often associated with decaying plant material. A sub-group of this class are the Fecal or Thermotolerant coliforms. They are abundant in the feces of warm-blooded animals, but can also be found in the aquatic environment, in soil and on vegetation. Their presence is used to indicate other pathogenic organisms of fecal origin that may be present. These include other bacteria, viruses, protozoa (Giardia, Cryptosporidium) and multicellular parasites. E.coli is a sub-group of the Coliforms organisms and Thermotolerant coliforms known to be associated with human infection. Thermotolerant coliforms and E.coli bacteria do not tolerate cold water and their presence indicates recent contamination. The three tests done are described:

1. **Total Coliforms** – Bacteria that ferment lactose at 35°C. This group includes bacteria from warm-blooded animal source as well as plant source. E.g. from algae, decaying plants.

2. **Thermotolerant or Fecal Coliforms** – Bacteria that have the capacity to grow at elevated temperature e.g. recently shed from the intestine of warm blooded animals.

3. **E.coli** – Bacteria that are a subgroup of the Total and Thermotolerant groups that are known to inhabit humans, warm blooded animals and some serotypes are pathogenic to humans.
Provincial Government Guidelines for “raw” or untreated drinking water state that no Thermotolerant (Fecal Coliforms) and no E.coli. should be present. Guidelines for water used for primary contact recreation use state the Thermotolerant Coliform level should not exceed a geometric mean of 200/100ml in 5 samples taken in a 30 day period. Also, the E.coli levels should not exceed a geometric mean of 77/100ml in 5 samples over a 30 day period.

Findings:
Total Coliforms
The test results for 2013 showed relatively high counts near Silverton creek (190/100ml) and near Carpenter creek (102/100ml) on Sept 12th. These were some of the highest counts seen in 3 years of study. In the past, high counts were seen at Hills and near Carpenter. Aside from these two readings, counts are in-line with those seen in 2011 and 2012.

![Graph of Total Coliforms](image-url)
Thermotolerant Coliform and E.coli Bacteria

In 2013, samples collected near the Silverton Hotel and New Denver Hospital showed both Thermotolerant Coliforms and E.coli. No Thermotolerant Coliforms or E.coli were seen in Slocan, near Wilson Creek or at Hills. These finding are similar to 2012 when the highest number of counts were seen also near Silverton. Overall, counts were low (4 and less than 4/100ml) and in the same range as previous years.

Summary:
While occasional Thermotolerant and E.coli were seen, all samples tested were within guidelines for primary contact recreation. In years 2010 and 2011 we tended to see elevated Coliform counts at stations in Slocan and Hills, while in 2012 slightly higher counts were observed near Silverton and again in Hills. In 2013, the highest Total Coliform counts were seen near Silverton and Carpenter creeks. No exceptionally high counts for Thermotolerant Coliforms or E.coli were observed at any station. Low levels of E.coli was detected in one sample collected at Bigalow Bay.

Respectfully Submitted,

Jennifer and Tony Yeow
Passmore Laboratory Ltd.

Passmore Laboratory Ltd. complies with methods and certification through UBC's Canadian Microbiological Proficiency Testing Program
APPENDIX V
Zooplankton Results and Laboratory Reports
Zooplankton – Slocan Lake 2011

Methods

Samples were collected at three sampling sites in the Slocan Lake with a Wisconsin net (mouth diameter = 0.5 m) hauled vertically to the surface from 40 m. Duplicate samples were taken at each site of the lake. Each sample was placed in 250-mL glass jar and preserved in 90% isopropanol. Samples were re-suspended in tap water filtered through a 74 μm mesh and sub-sampled using a four-chambered Folsom-type plankton splitter. Splits were placed in gridded plastic petri dishes and stained with Rose Bengal to facilitate viewing with a Wild M3B dissecting microscope (at up to 400X magnification). Zooplankton samples were analyzed for species density and biomass. For each replicate, organisms were identified to species level and counted until up to 200 organisms of the predominant species. If 150 organisms were counted by the end of a split, a new split was not started. The lengths of 30 organisms of each species were measured for use in biomass calculations, using a mouse cursor on a live television image of each organism.

Zooplankton species were identified with reference to taxonomic keys (Sandercock and Scudder 1996, Pennak 1989, Wilson 1959, Brooks 1959). Lengths were converted to biomass (μg dry-weight) using empirical length-weight regression from McCauley (1984).

Seasonal average values of zooplankton density and biomass are calculated for samples collected at three stations from May to September in 2011, and from August to November in 2010. In 2000 and 2001 sampling season started in April and continued on the monthly basis throughout October at only two sampling stations.

Results

Species Present

One calanoid copepod species has been identified in the samples from Slocan Lake in 2011. Leptodiaptomus pribilofensis (Juday & Muttkowski) was present in samples during the sampling season from May to September but in considerably low number, while cyclopoid copepod species Diacyclops bicuspidatus thomasi (Forbes) prevailed numerically in samples (Tab. 1).

Only two species of Cladocera Daphnia rosea (Sars) and Bosmina longirostris (O.F.Muller) were present in Slocan Lake samples during the studied period in 2011 (Tab.1).
Table 1. List of species identified in samples from Slocan Lake 2011 (May to September), 2010 (August to November) and 2000 - 2001 (April to October) (Andrusak et al. 2002)

<table>
<thead>
<tr>
<th></th>
<th>2000</th>
<th>2001</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPEPODA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CYCLOPOIDA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diacyclops bicuspidatus thomasi</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CALANOIDA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leptodiaptomus pribilofensis</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Leptodiaptomus ashlandi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLADOCERA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daphnia rosea</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Bosmina longirostris</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Alona sp.</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eubosmina longispina</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sida cristallina</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scapholeberis kingi</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Density and Biomass

The zooplankton density has been numerically dominated by copepods, which averaged 79% of the 2011 population (Fig. 1). *Daphnia* spp comprised 4%, while cladocerans other than *Daphnia* comprised 17%. Copepods were the most abundant zooplankton at each station during the studied season (Fig. 2). They dominated during the whole sampling season, with populations peaking in July-August. Copepods were comprised of calanoids and cyclopoids.

The seasonal average zooplankton density in 2010 (May to September) increased slightly to 11.83 individuals/L from 8.99 individuals/L in 2010 (Tab.2, Fig. 3). That was the result of Copepoda and Cladocera other than *Daphnia* abundance increase, while *Daphnia* spp. stayed at the similar level as in 2010.

Table 2. Seasonal average zooplankton density in Slocan Lake 2000, 2001 (April to October), 2010 (August to November) and 2011 (May to September).

<table>
<thead>
<tr>
<th></th>
<th>2000</th>
<th>2001</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>21.30</td>
<td>21.15</td>
<td>8.99</td>
<td>11.83</td>
</tr>
<tr>
<td>Copepoda</td>
<td>20.01</td>
<td>15.16</td>
<td>7.48</td>
<td>9.30</td>
</tr>
<tr>
<td>Daphnia</td>
<td>0.10</td>
<td>1.74</td>
<td>0.57</td>
<td>0.49</td>
</tr>
<tr>
<td>other Cladocera</td>
<td>1.19</td>
<td>4.25</td>
<td>0.95</td>
<td>2.04</td>
</tr>
</tbody>
</table>
In 2011 sampling season zooplankton biomass reached its peak in August dominated by *Daphnia* with 35.00µg/L, which made up 56% of the total biomass at that time (Fig. 4). However, average for the whole study season May to September *Daphnia* comprised 30%, cladocerans other than *Daphnia* comprised 10%, while copepods made up to 60% of the total zooplankton biomass (Fig. 4).

Total zooplankton biomass and biomass of other cladocerans increased to 26.08µg/L in 2011 from 22.86µg/L in 2010 (Tab. 3, Fig 3). Biomass of copepods and cladocerans other than *Daphnia* also increased in comparison to 2010, while *Daphnia* biomass decreased to 7.95µg/L, from 10.11µg/L 2010 (Tab.3). In comparison to 2000-2001 data decrease of total zooplankton biomass during the study period in 2010 and 2011 was due to significant decreases in the biomass of other cladocerans and copepods. *Daphnia* spp. made up 5% and 57% in 2000, 2001 and 44% and 30% of the total zooplankton biomass in 2010 and 2011.

Table 3. Seasonal average zooplankton biomass in Slocan Lake 2000, 2001 (April to October), 2010 (August to November) and 2011 (May to September).

<table>
<thead>
<tr>
<th>µg/L</th>
<th>2000</th>
<th>2001</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>27.07</td>
<td>58.94</td>
<td>22.86</td>
<td>26.08</td>
</tr>
<tr>
<td>Copepoda</td>
<td>24.24</td>
<td>17.65</td>
<td>11.36</td>
<td>15.53</td>
</tr>
<tr>
<td>Daphnia</td>
<td>1.27</td>
<td>33.77</td>
<td>10.11</td>
<td>7.95</td>
</tr>
<tr>
<td>other Cladocera</td>
<td>1.56</td>
<td>7.52</td>
<td>1.39</td>
<td>2.60</td>
</tr>
</tbody>
</table>

The largest zooplankton population in 2011 was seen in August at site 2 with 29.71 individuals/L and biomass of 94.98 µg/L (Fig. 2, Fig. 5). *Daphnia* first appeared in July, reaching the highest density in August at site 2 with 3.62 individuals/L and biomass 56.84 µg/L which was comprising to 60% of total biomass at that time.

References

Zooplankton – Slocan Lake 2012

Methods

Samples were collected at three sampling sites in the Slocan Lake with a Wisconsin net (mouth diameter = 0.5 m) hauled vertically to the surface from 40 m. Duplicate samples were taken at each site of the lake. Each sample was placed in 250-mL glass jar and preserved in 90% isopropanol. Samples were re-suspended in tap water filtered through a 74 μm mesh and sub-sampled using a four-chambered Folsom-type plankton splitter. Splits were placed in gridded plastic petri dishes and stained with Rose Bengal to facilitate viewing with a Wild M3B dissecting microscope (at up to 400X magnification). Zooplankton samples were analyzed for species density and biomass. For each replicate, organisms were identified to species level and counted until up to 200 organisms of the predominant species. If 150 organisms were counted by the end of a split, a new split was not started. The lengths of 30 organisms of each species were measured for use in biomass calculations, using a mouse cursor on a live television image of each organism.

Zooplankton species were identified with reference to taxonomic keys (Sandercock and Scudder 1996, Pennak 1989, Wilson 1959, Brooks 1959). Lengths were converted to biomass (μg dry-weight) using empirical length-weight regression from McCauley (1984).

Seasonal average values of zooplankton density and biomass are calculated for samples collected at three stations from July to October in 2012, May to September in 2011, and from August to November in 2010. In 2000 and 2001 sampling season started in April and continued on the monthly basis throughout October at only two sampling stations

Results

Species Present

One calanoid copepod species has been identified in the samples from Slocan Lake in 2. *Leptodiaptomus pribilofensis* (Juday & Muttkowski) was present in samples during the sampling season from July to October but in considerably low number while cyclopoid copepod species *Diacyclops bicuspidatus thomasi* (Forbes) prevailed numerically in samples (Tab. 1).

Only two species of Cladocera *Daphnia rosea* (Sars) and *Bosmina longirostris* (O.F.Muller) were present in Slocan Lake samples during the studied period in 2(Tab.1).
Table 1. List of species identified in samples from Slocan Lake 2JulyOctober, 2011 (May to September), 2010 (August to November) and 2000 - 2001 (April to October) (Andrusak et al. 2002)

<table>
<thead>
<tr>
<th></th>
<th>2000</th>
<th>2001</th>
<th>2010</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPEPODA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CYCLOPOIDA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diacyclops bicuspidatus thomasi</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CALANOIDA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leptodiaptomus pribilofensis</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Leptodiaptomus ashlandi</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLADOCERA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daphnia rosea</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Bosmina longirostris</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alona sp.</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eubosmina longispina</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sida cristallina</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scapholeberis kingi</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Density and Biomass

The zooplankton density has been numerically dominated by copepods, which averaged 83% of the population (Fig. 1). *Daphnia* spp comprised 10%, while cladocerans other than *Daphnia* comprised 7%. Copepods were the most numerous zooplankton at each station during the studied season (Fig. 2). They dominated during the whole sampling season, with steady abundance during the whole 2012 sampling season. Copepods were comprised of calanoids and cyclopoids.

The seasonal average zooplankton density in 2(July to October) defor almost five folds to 2.57 individuals/L from individuals/L in 1(Tab.2, Fig. 3). That was mainly the result of Copepoda abundance de.

Table 2. Seasonal average zooplankton density in Slocan Lake 2000, 2001 (April to October), 2010 (August to November), 2011 (May to September) A 2012 (July to October).

<table>
<thead>
<tr>
<th></th>
<th>2000</th>
<th>2001</th>
<th>2010</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>21.30</td>
<td>21.15</td>
<td>8.99</td>
<td>2.57</td>
</tr>
<tr>
<td>Copepoda</td>
<td>20.01</td>
<td>15.16</td>
<td>7.48</td>
<td>2.13</td>
</tr>
<tr>
<td>Daphnia</td>
<td>0.10</td>
<td>1.74</td>
<td>0.57</td>
<td>0.25</td>
</tr>
<tr>
<td>other Cladocera</td>
<td>1.19</td>
<td>4.25</td>
<td>0.95</td>
<td>0.19</td>
</tr>
</tbody>
</table>

In 2sampling season zooplankton biomass reached its peak in September, dominated by *Daphnia* with 6.16μg/L, which made up 63% of the total biomass at that time (Fig. 4). However, average for the whole study season July to October*Daphnia* comprised 49%,
cladocerans other than Daphnia comprised 3%, while copepods made up to 48% of the total zooplankton biomass (Fig. 4).

Total zooplankton biomass dealmost four times to $6.67 \mu g/L$ in 2 from $\mu g/L$ in 1 (Tab. 3, Fig 3). Biomass of each zooplankton group dein comparison to 1, especially biomass of copepods which decreased five folds to $3.20 \mu g/L$, from $15.53 \mu g/L$ 1 (Tab. 3). In comparison to 2001 data, decrease of total zooplankton biomass during the study period in 2010-2012 was due to significant decreases in the biomass of Daphnia spp., which made up 57% with 33.77 in 2001. In 2010 Daphnia made up 44% with 10.11, 30% with 7.95 $\mu g/L$ and 4th 3.25 $\mu g/L$.

Table 3. Seasonal average zooplankton biomass in Slocan Lake 2000, 2001 (April to October), 2010 (August to November), 2011 (May to September) 2JulyOctober).

<table>
<thead>
<tr>
<th>µg/L</th>
<th>2000</th>
<th>2001</th>
<th>2010</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>27.07</td>
<td>58.94</td>
<td>22.86</td>
<td>6.67</td>
</tr>
<tr>
<td>Copepoda</td>
<td>24.24</td>
<td>17.65</td>
<td>11.36</td>
<td>3.20</td>
</tr>
<tr>
<td>Daphnia</td>
<td>1.27</td>
<td>33.77</td>
<td>10.11</td>
<td>3.24</td>
</tr>
<tr>
<td>other Cladocera</td>
<td>1.56</td>
<td>7.52</td>
<td>1.39</td>
<td>0.23</td>
</tr>
</tbody>
</table>

The largest zooplankton population in 2 was seen in September at site 3 with 3.43 individuals/L, while the highest biomass of $12.19 \mu g/L$ was found at site 1 also in September (Fig. 2, Fig. 5). Daphnia was present during the whole studied season in 2012, reaching the highest density in September at site 1 with 0.81 individuals/L and biomass 8.92 $\mu g/L$ which edto 73% of total biomass at that time.

References

Zooplankton – Slocan Lake 2013

Methods

Samples were collected at three sampling sites in the Slocan Lake with a Wisconsin net (mouth diameter = 0.5 m) hauled vertically to the surface from 40 m. Duplicate samples were taken at each site of the lake. Each sample was placed in 250-mL glass jar and preserved in 90% isopropanol. Samples were re-suspended in tap water filtered through a 74 μm mesh and sub-sampled using a four-chambered Folsom-type plankton splitter. Splits were placed in gridded plastic petri dishes and stained with Rose Bengal to facilitate viewing with a Wild M3B dissecting microscope (at up to 40X magnification). Zooplankton samples were analyzed for species density and biomass. For each replicate, organisms were identified to species level and counted until up to 200 organisms of the predominant species. If 150 organisms were counted by the end of a split, a new split was not started. The lengths of 30 organisms of each species were measured for use in biomass calculations, using a mouse cursor on a live television image of each organism.

Zooplankton species were identified with reference to taxonomic keys (Sandercock and Scudder 1996, Pennak 1989, Wilson 1959, Brooks 1959). Lengths were converted to biomass (μg dry-weight) using empirical length-weight regression from McCauley (1984).

Seasonal average values of zooplankton density and biomass are calculated for samples collected at three stations from July to September in 2013, July to October in 2012, May to September in 2011, and from August to November in 2010. In 2000 and 2001 sampling season started in April and continued on the monthly basis throughout October at only two sampling stations.

Results

Species Present

One calanoid copepod species has been identified in the samples from Slocan Lake in 2013. *Leptodiaptomus pribilofensis* (Juday & Muttkowski) was present in samples during the sampling season from July to September but in considerably low number while cyclopoid copepod species *Diacylops bicuspidatus thomasi* (Forbes) prevailed numerically in samples (Tab. 1).

Only three species of Cladocera: *Daphnia rosea* (Sars), *Bosmina longirostris* (O.F.Muller) and *Scapholeberis rammneri* (Dumont and Pensael) were present in Slocan Lake samples during the studied period in 2013 (Tab.1).
Table 1. List of species identified in samples from Slocan Lake 2013 (July to September), 2012 (July to October), 2011 (May to September), 2010 (August to November) and 2000 - 2001 (April to October) (Andrusak et al. 2002)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CYCLOPOIDA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diacyclops bicuspidatus thomasi</td>
<td>++++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CALANOIDA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leptodiaptomus pribilofensis</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Leptodiaptomus ashlandi</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLADOCERA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daphnia rosea</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Bosmina longirostris</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alona sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Eubosmina longispina</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sida cristallina</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scapholeberis kingi</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scapholeberis rammneri</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Density and Biomass

The zooplankton density has been numerically dominated by copepods, which averaged 78% of the 2013 population (Fig. 1). *Daphnia* spp comprised 15%, while cladocerans other than *Daphnia* comprised 8%. Copepods were the most numerous zooplankton at each sampling station, with steady abundance during the whole 2013 sampling season (Fig. 2). Copepods were comprised of calanoids and cyclopoids.

The highest copepod density was found in September at station 1 with 2.50 individuals/L. (Fig. 2). The number of Cladocerans varied by season as well as along the reservoir. Cladocerans other than *Daphnia* were the most numerous in September at each sampling station. The highest density was found in September at station 3 with 0.42 individuals/L. *Daphnia* was present during the whole sampling season at each station. Monthly averaged density of *Daphnia* for the whole reservoir increased gradually during the sampling season reaching its peak in September with 0.63 individuals/L (Fig.1). The proportion of *Daphnia* density was the highest at station 1 (28%), while at stations 2 and 3 it was 18% and 19% respectively.

The seasonal average zooplankton density in 2013 (July to September) decreased slightly to 2.42 individuals/L from 2.57 individuals/L in 2012 (Tab.2, Fig. 3).
Table 2. Seasonal average zooplankton density in Slocan Lake 2000, 2001 (April to October), 2010 (August to November), 2011 (May to September), 2012 (July to October) and 2013 (July to September)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>21.30</td>
<td>21.15</td>
<td>8.99</td>
<td>11.83</td>
<td>2.57</td>
<td>2.42</td>
</tr>
<tr>
<td>Copepoda</td>
<td>20.01</td>
<td>15.16</td>
<td>7.48</td>
<td>9.30</td>
<td>2.13</td>
<td>1.88</td>
</tr>
<tr>
<td>Daphnia</td>
<td>0.10</td>
<td>1.74</td>
<td>0.57</td>
<td>0.49</td>
<td>0.25</td>
<td>0.35</td>
</tr>
<tr>
<td>other Cladocera</td>
<td>1.19</td>
<td>4.25</td>
<td>0.95</td>
<td>2.04</td>
<td>0.19</td>
<td>0.19</td>
</tr>
</tbody>
</table>

In 2013 sampling season zooplankton biomass reached its peak in September with 16.20μg/L, dominated by *Daphnia* with 12.39μg/L, which made up 76% of the total biomass at that time (Fig. 4). However, average for the whole study season July to September *Daphnia* comprised 56%, cladocerans other than *Daphnia* comprised 3%, while copepods made up to 41% of the total zooplankton biomass (Fig. 4).

Total zooplankton biomass increased to 8.34μg/L in 2013 from 6.67μg/L in 2012 (Tab. 3, Fig 3). Biomass of *Daphnia* increased in comparison to 2012, while biomass of copepods and other cladocerans stayed at similar level as in the previous year (Tab.3). In comparison to 2001 data, decrease of total zooplankton biomass during the study period in 2010-2013 was due to significant decreases in biomass of *Daphnia* spp., which made up 57% of the total zooplankton biomass with 33.77μg/L in 2001. In 2010 *Daphnia* made up 44% with 10.11μg/L, 30% with 7.95μg/L in 2011, 49% with 3.25μg/L in 2012 and 56% with 4.66μg/L in 2013.

Table 3. Seasonal average zooplankton biomass in Slocan Lake 2000, 2001 (April to October), 2010 (August to November), 2011 (May to September), 2012 (July to October) and 2013 (July to September).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>27.07</td>
<td>58.94</td>
<td>22.86</td>
<td>26.08</td>
<td>6.67</td>
<td>8.34</td>
</tr>
<tr>
<td>Copepoda</td>
<td>24.24</td>
<td>17.65</td>
<td>11.36</td>
<td>15.53</td>
<td>3.20</td>
<td>3.46</td>
</tr>
<tr>
<td>Daphnia</td>
<td>1.27</td>
<td>33.77</td>
<td>10.11</td>
<td>7.95</td>
<td>3.24</td>
<td>4.66</td>
</tr>
<tr>
<td>other Cladocera</td>
<td>1.56</td>
<td>7.52</td>
<td>1.39</td>
<td>2.60</td>
<td>0.23</td>
<td>0.22</td>
</tr>
</tbody>
</table>

The largest zooplankton population in 2013 was seen in September at site 1 with 3.73 individuals/L, and the highest biomass of 26.24 μg/L (Fig. 2, Fig. 5). *Daphnia* was present during the whole studied season in 2013, reaching the highest density in September at site 1 with 1.04 individuals/L and biomass 22.12 μg/L which comprised to 84% of the total biomass at that time.
References

